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DP - Challenges

∇

I Soundness: to which extent does the derivative program ∇P compute the actual
derivative of P?

I Generality: for which program constructs could ∇(·) be defined?
I Efficiency: what if the program P gets complex? How long does it take to compute
∇(P)?
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I Semantics: can we give a satisfactory semantics to BP programs sampling from
continuous distributions?

I Sound Inference: can we prove inference algorithms correct, or even formulate their
correctness?
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Thank You!

Questions?


