Machine Learning
and Programming Languages:
Challenges and Opportunities

Ugo Dal Lago

AL
et

ﬁf-“:"'a ALMA MATER STUDIORUM S —
.r_x’_'rﬂh UMIVERSITA DI BOLOGMA

& za—

First ALMA Al Workshop on Foundations of Al

ML vs. PL

/\

Machine Programming Language
Learning Design and Implementation

.

NAIT YT
Synthesis, and automatic program completion;

v

v

Prediction of program intentions;

v

Code classification.

— A

Machine Programming Language
Learning Design and Implementation

.

NAIT YT
Synthesis, and automatic program completion;

v

v

Prediction of program intentions;

v

Code classification.

— A

Machine Programming Language
Learning Design and Implementation

.

> Tensor Programming;
> Differentiable Programming;

> Bayesian Programming;

>..-

NAIT YT
Synthesis, and automatic program completion;

v

v

Prediction of program intentions;

v

Code classification.

— A

Machine Programming Language
Learning Design and Implementation

.

> Tensor Programming;

v

Differentiable Programming; This talk

> Bayesian Programming; This talk

Differentiable Programming

Model Loss Trained
| —_— . e
Data Function Model

Differentiable Programming

A specific form of differen-
tiable function

Model Loss Trained
| —_— . e
Data Function Model

Differentiable Programming

A specific form of differen- Gradient Based Optimiza-
tiable function tion Methods
Model Loss Trained
| e —_—

Data Function Model

Differentiable Programming

A specific form of differen- Gradient Based Optimiza-
tiable function tion Methods
Model Loss Trained
+ N >) —>
Data Function Model

Differential Programming

“What if we take any program from a general purpose programming lan-
guage as the underlying model?”

DP - Applications

Differentiable Programming for
Image Processing and Deep Learning in Halide

TZU-MAO LI, MIT CSAIL

MICHAEL GHARBI, MIT CSAIL

ANDREW ADAMS, Facebook Al Research

FREDO DURAND, MIT CSAIL

JONATHAN RAGAN-KELLEY, UC Berkeley & Google

input bilateral grid blurry input prior burst of RAW inputs
blur]
kernel v
] 8
B
NN, . B
el B

IMAGE PROCESSING

DP - Applications

Fast Greeks by Algorithmic Differentiation

Luca Capriotti*

Global Modelling and Analytics Group, Investment Banking Division, Credit Suisse Group,
Eleven Madison Avenue, New York City, NY 10010-3086, United States of America

(Dated: June 2, 2010)

We show how Algorithmic Di iation can be used to impl efficiently the Pathwise Deriva-
tive method for the calculation of option sensitivities with Monte Carlo. The main practical diffi-
culty of the Pathwise Derivative method is that it requires the differentiation of the payout func-
tion. For the type of structured options for which Monte Carlo simulations are usually employed,
these derivatives are typically cumbersome to calculate analytically, and too time consuming to
evaluate with standard finite-differences approaches. In this paper we address this problem and
show how Algorithmic Differentiation can be employed to calculate very efficiently and with ma-
chine precision accuracy these derivatives. We illustrate the basic workings of this computational
technique by means of simple examples, and we demonstrate with several numerical tests how the
Pathwise Derivative method combined with Algorithmic Differentiation — especially in the adjoint
mode — can provide speed-ups of several orders of magnitude with respect to standard methods.

Keywords: Algorithmic Differentiation, Monte Carlo Simulations, Derivatives Pricing

I. INTRODUCTION is generally smaller than the one of Bumj
limitation of the technique is that it invols
Monte Carlo (MC) simulations are becoming the main tiation of the payout function. These deri

COMPUTATIONAL

FINANCE

DP - Challenges

def I(x):
1f x==0:
return 0
else:
return x

DP - Challenges

def I(x): def dI(x):
1f x==0: 1T x==0:
return 0 Vv . return 0
else: else:

return x return 1

DP - Challenges

def I(x): def dI(x):
1f x==0: 1T x==0:
return 0 Vv . return 0
else: else:
return x return 1

> Soundness: to which extent does the derivative program VP compute the actual
derivative of P?

» Generality: for which program constructs could V(-) be defined?

> Efficiency: what if the program P gets complex? How long does it take to compute

V(p)?

Bayesian Programming

Model Trained
— >
Data Model

Bayesian Programming

The joint distributions of
some random variables,
called the prior.

Model Trained
—

D;—t a Model

Bayesian Programming

The joint distributions of
some random variables, Bayesian Inference
called the prior.

Model Trained
—

D;—t a Model

Bayesian Programming

The joint distributions of
some random variables,
called the prior.

Model

|
Data

Bayesian Inference

Trained
Model

The prior condi-
tioned to data,
called the poste-
7407

Bayesian Programming

The joint distributions of
some random variables,
called the prior.

Model

|
Data

Bayesian Programming

Bayesian Inference

Trained
Model

The prior condi-
tioned to data,
called the poste-
7407

“What if we take any program from a general purpose randomized pro-
gramming language as the underlying prior?”

BP - Applications

BP - Applications

-

BP - Applications

BP - Applications

—_

normalize(

2. x + sample(bern (?)),

3. r < if x then 10 else 3;
observe 4 from poisson(r);

return(z))

BP - Applications

—_

normalize(

2. x + sample(bern (?)),

3. r < if x then 10 else 3;
observe 4 from poisson(r);

return(z))

BP - Applications

1. normalize(

5
2. x < sample(bern <7>)

3. r < if x then 10 else 3;
observe 4 from poisson(r);

return(z))

xr = true

3|

~No

x = false

BP - Applications

1. normalize(

2. x < sample(bern <£—7)>)7

3. r + if x then 10 else 3;
4 observe 4 from poisson(r);
return(z))
T = true

T = true

5 r=10

7

2

z B x = false
x = false

r=3

BP - Applications

1. normalize(

2. x +— sample(bern (?)),

3. r < if x then 10 else 3;

observe 4 from poisson(r);

return(x))
T = true T = true
4 r=10
7 poisson(10)(4) ~ 0.016
2 poisson(3)(4) ~ 0.168
7

x = false
r = false—
r=3

BP - Applications

1. normalize(

2. x + sample(bern (?)),

3. r < if x then 10 else 3;
observe 4 from poisson(r);

return(x))

x = true
xr = true

720.22 r=10

2078

x = false
T =

z = false

BP - Applications

ETURN TO ISSUE PREV ARTICLE NEXT
Predicting Drug-Induced Liver Injury with Bayesian Machine Learning
Dominic P. Williams*, Stanley E. Lazic, Alison J. Foster, Elizaveta Semenova, and Paul Morgan
© Cite this: Chem. Res. Toxicol. 2020,33,1,239-248 Article Views metr Chtation o Add
Publication Date: September 19, 2019 ~
https://doi.org/10.1021/acs.chemrestox.9b00264 146 12 17 @ @
Copyright © 2019 American Chemical Society LEARN ABOUT THESE METRICS
RIGHTS & PERMISSIONS

PDF (2 MB) e Supporting Info (3) » SUBJECTS: Anatomy, Assays, Bioactivation, Mathematical methods, Toxicity

Abstract
Drug induced liver injury (DILI) can require significant risk in drug devel and on ion can cause
morbidity or mortality, leading to drug attrition. Optimizing candid preclinically can minimize h icity risk, but it is

difficult to predict due to multiple etiologies encompassing DILI, often with multifactorial and overlapping mechanisms. In
addition to epidemiological risk factors, physicochemical properties, dose, disposition, lipophilicity, and hepatic
function are also relevant for DILI risk. Better human-relevant, predictive models are required to improve hepatotoxicity risk

assessment in drug discovery. Our hypothesis is that integrating mechanistically relevant hepatic safety assays with Bayesian

machine learning will improve hepatic safety risk prediction. We present a quantitative and mechanistic risk assessment for oot
candidate nomination using data from in vitro assavs (hepatic soheroids. BSEP. mitochondrial toxicitv. and bioactivation).

INJURY PREDICTION

BP - Challenges

1. normalize(

2 x < sample(gauss (0,1)) in
4. observe d from exp(1/f(z));
5 return(x))

BP - Challenges

normalize(

1.

x < sample(gauss (0,1)) in

2.

observe d from exp(1/f(z));

return(x))

4.

5.

BP - Challenges

def whm():
h=sample(Normal(1.7,0.5))
if sample(Bernoulli(@.5)):
observe(Normal(h,0.1),2.0)
return h

Outputs: 1.812, 1.814, 1.823, 1.813,
1.806

BP - Challenges

def whm(): def whem():
h=sample(Normal(1.7,0.5)) h=sample(Normal(17@,50))
if sample(Bernoulli(0.5)): if sample(Bernoulli(@.5)):
observe(Normal(h,0.1),2.0) observe(Normal(h,10),200)
return h return h

Outputs: 1.812, 1.814, 1.823, 1.813, Outputs: 170.1, 170.4, 171.5, 170.2,
1.806 169.4

BP - Challenges

def whm(): def whem():
h=sample(Normal(1.7,0.5)) h=sample(Normal(17@,50))
if sample(Bernoulli(0.5)): if sample(Bernoulli(@.5)):
observe(Normal(h,0.1),2.0) observe(Normal(h,10),200)
return h return h
Outputs: 1.812, 1.814, 1.823, 1.813, Outputs: 170.1, 170.4, 171.5, 170.2,
1.806 169.4

> Semantics: can we give a satisfactory semantics to BP programs sampling from
continuous distributions?

» Sound Inference: can we prove inference algorithms correct, or even formulate their
correctness?

Wrapping Up

.+ PPX julia

Pl |

Q
©

'+ PPX

Wrapping Up

julia

‘The Simple Essence of Automatic Differentiation

el

00

Synihesisof Probabilsic Programs for Automatic

Backpropagation i the Simply Typed Lambda-Calculus
with Lincar Negation

®
On the Versatility of Open Logical Relations®
Con

suity, Automatic Diferentision,
i & Contament Thoorem

Wrapping Up

‘The Simple Essence of Automatic Differentiation

Thank You!

(Questions?

