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Differential Programming

“What if we take any program from a general purpose programming lan-
guage as the underlying model?”
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Differentiable Programming for
Image Processing and Deep Learning in Halide
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Fast Greeks by Algorithmic Differentiation

Luca Capriotti*

Global Modelling and Analytics Group, Investment Banking Division, Credit Suisse Group,
Eleven Madison Avenue, New York City, NY 10010-3086, United States of America

(Dated: June 2, 2010)

We show how Algorithmic Di iation can be used to impl efficiently the Pathwise Deriva-
tive method for the calculation of option sensitivities with Monte Carlo. The main practical diffi-
culty of the Pathwise Derivative method is that it requires the differentiation of the payout func-
tion. For the type of structured options for which Monte Carlo simulations are usually employed,
these derivatives are typically cumbersome to calculate analytically, and too time consuming to
evaluate with standard finite-differences approaches. In this paper we address this problem and
show how Algorithmic Differentiation can be employed to calculate very efficiently and with ma-
chine precision accuracy these derivatives. We illustrate the basic workings of this computational
technique by means of simple examples, and we demonstrate with several numerical tests how the
Pathwise Derivative method combined with Algorithmic Differentiation — especially in the adjoint
mode — can provide speed-ups of several orders of magnitude with respect to standard methods.

Keywords: Algorithmic Differentiation, Monte Carlo Simulations, Derivatives Pricing
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def I(x): def dI(x):
1f x==0: 1T x==0:
return 0 Vv . return 0
else: else:
return x return 1

> Soundness: to which extent does the derivative program VP compute the actual
derivative of P?

» Generality: for which program constructs could V(-) be defined?

> Efficiency: what if the program P gets complex? How long does it take to compute

V(p)?
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“What if we take any program from a general purpose randomized pro-
gramming language as the underlying prior?”
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1. normalize(

2. x +— sample(bern (?)),

3. r < if x then 10 else 3;

observe 4 from poisson(r);

return(x))
T = true T = true
4 r=10
7 poisson(10)(4) ~ 0.016
2 poisson(3)(4) ~ 0.168
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1. normalize(

2. x + sample(bern (?)),

3. r < if x then 10 else 3;
observe 4 from poisson(r);

return(x))

x = true
xr = true

720.22 r=10
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ETURN TO ISSUE PREV  ARTICLE NEXT
Predicting Drug-Induced Liver Injury with Bayesian Machine Learning
Dominic P. Williams*, Stanley E. Lazic, Alison J. Foster, Elizaveta Semenova, and Paul Morgan
© Cite this: Chem. Res. Toxicol. 2020,33,1,239-248  Article Views metr Chtation o Add
Publication Date: September 19, 2019 ~
https://doi.org/10.1021/acs.chemrestox.9b00264 146 12 17 @ @
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RIGHTS & PERMISSIONS

PDF (2 MB) e Supporting Info (3) » SUBJECTS: Anatomy, Assays, Bioactivation, Mathematical methods, Toxicity

Abstract
Drug induced liver injury (DILI) can require significant risk in drug devel and on ion can cause
morbidity or mortality, leading to drug attrition. Optimizing candid preclinically can minimize h icity risk, but it is

difficult to predict due to multiple etiologies encompassing DILI, often with multifactorial and overlapping mechanisms. In
addition to epidemiological risk factors, physicochemical properties, dose, disposition, lipophilicity, and hepatic
function are also relevant for DILI risk. Better human-relevant, predictive models are required to improve hepatotoxicity risk

assessment in drug discovery. Our hypothesis is that integrating mechanistically relevant hepatic safety assays with Bayesian

machine learning will improve hepatic safety risk prediction. We present a quantitative and mechanistic risk assessment for oot
candidate nomination using data from in vitro assavs (hepatic soheroids. BSEP. mitochondrial toxicitv. and bioactivation).

INJURY PREDICTION
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def whm():
h=sample(Normal(1.7,0.5))
if sample(Bernoulli(@.5)):
observe(Normal(h,0.1),2.0)
return h

Outputs: 1.812, 1.814, 1.823, 1.813,
1.806
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def whm(): def whem():
h=sample(Normal(1.7,0.5)) h=sample(Normal(17@,50))
if sample(Bernoulli(0.5)): if sample(Bernoulli(@.5)):
observe(Normal(h,0.1),2.0) observe(Normal(h,10),200)
return h return h
Outputs: 1.812, 1.814, 1.823, 1.813, Outputs: 170.1, 170.4, 171.5, 170.2,
1.806 169.4

> Semantics: can we give a satisfactory semantics to BP programs sampling from
continuous distributions?

» Sound Inference: can we prove inference algorithms correct, or even formulate their
correctness?
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