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The Geometric Structure of Data

Deep Learning and classification tasks:

Data occupies a domain in R
n

(e.g. MNIST in R
784, n = 784 = 28× 28 pixels)

The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!

Main result:

1 A partially trained neural network decomposes the data domain in R
n

as the disjoint union of submanifolds (the leaves of a foliation).

2 The dimension d of every submanifold (every leaf of the foliation) is
bounded by the number of classes C of our classification model:
d << n (e.g. MNIST d = 9 << 784).



Data leaf versus Noise leaf

The data domain is the disjoint union of subdomains (foliation) and the
training data are all on one leaf.



Information Geometry

Information Geometry: studies geometrical structures on manifolds in
the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural

computation, 10(2):251276, 1998.

Amari Loss: I (x ,w) = − log(p(y |x ,w))

Loss function: L(x ,w) = Ey∼q[I (x ,w)]

L(x ,w) = Ey∼q[− log(p(y |x ,w))] = KL(q(y |x)||p(y |x ,w)) + constant

p(y |x ,w) = (pi (y |x ,w))i=1,...,C : discrete probability distribution of data x

C : classification labels y .
w : parameters



The Fisher matrix F and the Local Data Matrix G

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T ]

G (x ,w) = Ey∼p[∇x log p(y |x ,w) · (∇x log p(y |x ,w))T ].

Key Facts:

KL(p(y |x ,w + δw)||p(y |x ,w)) = (δw)TF (x ,w)(δw) +O(||δw ||3)

KL(p(y |x + δx ,w)||p(y |x ,w)) = (δx)TG (x ,w)(δx) +O(||δx ||3)

The Fisher matrix F provides a natural metric on the parameter space

during dynamics of the stochastic gradient descent.
The Local Data matrix G provides a natural metric on the data domain.



The local data matrix G during optimization

This is why we do not want a fully trained model: the information is lost
at equilibrium!



Properties of the local data matrix

1 G (x ,w) is a positive semidefinite symmetric matrix.

2 rank G (x ,w) < C .

Dataset G (x ,w) size rank G (x ,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

Main result.

1 At each point in the data domain in R
n, kerG (x ,w)⊥ is tangent to a

submanifold (data leaf) of dimension rank G (x ,w) < C

2 G defines a foliation on R
n of rank at most C (Frobenius Thm).



Moving on the data leaf: MNIST

Moving around in on the data leaf:

We can connect any two data=images.

Any path starting from one image and going to another goes through
data with the same level of noise.

We can connect a digit from MNIST to a symbol not in MNIST moving
on the data leaf:



Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.



Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the same level
of noise:



Moving on the data manifold: CIFAR10



Conclusions

Using a partially trained model we can construct a low dimensional
submanifold the data leaf of Rn containing the data the model was
trained with.

We can navigate the data leaf and obtain either data or points with
similarities to our data.

Moving orthogonally to the data leaf will add noise to data, but the
model will not change its accuracy.

1 Possible Applications:

Denoising of images: project a noisy data point on the data leaf to
perform denoising.
Use the distance from the data leaf to recognize out-of- distribution
examples
GAN: generate new images with the same label, by moving on the data
leaf.
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