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The Geometric Structure of Data

Deep Learning and classification tasks:
@ Data occupies a domain in R”
(e.g. MNIST in R7* n =784 = 28 x 28 pixels)
@ The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!
Main result:

O A partially trained neural network decomposes the data domain in R”
as the disjoint union of submanifolds (the leaves of a foliation).

© The dimension d of every submanifold (every leaf of the foliation) is

bounded by the number of classes C of our classification model:
d << n(e.g. MNIST d =9 << 784).



Data leaf versus Noise leaf

The data domain is the disjoint union of subdomains (foliation) and the

training data are all on one leaf.
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Information Geometry

Information Geometry: studies geometrical structures on manifolds in
the parameter space and the data domain.

Amari, S.-1. Natural gradient works efficiently in learning. Neural
computation, 10(2):251276, 1998.

Amari Loss: I(x,w) = —log(p(y|x, w))
Loss function: L(x,w) = E,q4[/(x, w)]

L(x, w) = Ey~q[—log(p(y|x, w))] = KL(q(y|x)||p(y|x, w)) + constant
p(y|x,w) = (pi(y|x, w))i=1,..c: discrete probability distribution of data x

C: classification labels y.
w: parameters



The Fisher matrix F and the Local Data Matrix G

F(x,w) =E,p[Vwlogp(ylx,w)  (Vy logp(y|x, w))T]
G(x,w) =E,p[Vilogp(y|x,w) (Vxlogp(y|x,w))T].
Key Facts:

KL(p(ylx, w + dw)[|p(y|x, w)) = = (dw) T F(x, w)(dw) + O(||éw]*)

KL(p(ylx + ox, w)[lp(ylx, w)) = (0x)7 G(x, w)(0x) + O(|[dx]|*)

The Fisher matrix F provides a natural metric on the parameter space
during dynamics of the stochastic gradient descent.
The Local Data matrix G provides a natural metric on the data domain.



The local data matrix G during optimization
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This is why we do not want a fully trained model: the information is lost
at equilibrium!



Properties of the local data matrix

© G(x,w) is a positive semidefinite symmetric matrix.
@ rank G(x,w) < C.

Dataset  G(x,w) size rank G(x,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

Main result.

© At each point in the data domain in R”, ker G(x, W)l is tangent to a
submanifold (data leaf) of dimension rank G(x,w) < C

@ G defines a foliation on R” of rank at most C (Frobenius Thm).



Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.

@ Any path starting from one image and going to another goes through
data with the same level of noise.

Iteration 1250 Iteration 1875 Iteration 2500 Iteration 3125 teration 3750 teration 4375 Iteration 5000
reditiad Ibel L vith preciciad bl & with pretiched fabel & with oretictod 1abet & with prediciad nbel 3 with prediciad e 5 ith pretictod Inbel  with preticiad nbel & with preticied bl 3 ith
probability 0.9880  probability 0.9974  probability 0.9962  probability 0.9893  probability 09950 probability 0.9964  probability 0.9946  probability 0.9938  probability 0.9937
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We can connect a digit from MNIST to a symbol not in MNIST moving
on the data leaf:

Iteration 1250: Iteration 1875: Iteration 2500 Iteration 3125: teration 3750 teration 4375: Iteration 5000:
pr!dl(led et with pr!dlcled Mbet s with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9139  probability 0.9937  probability 0.9808  probability 0.9795  probability 09670 probability 0.9512  probability 0.9448  probability 0.9228  probability 0.8964




Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Iteration 0 n 125 Iteration 250: Iteration 375 n 500: Iteration 625 Iteration 750: Iteration 875: Iteration 1000:
predicted Iabel D with prﬂll:teﬂ Tabei 0 with predicted Tabet 0 with predicted label O with premcted bl 0 with predicted label 0 with predicted Iabel D with predicted Iabel D with predicted [abel D with
probability 0.9996  probability 0.9996  probability 0.9993  probability 0.9978  probability 0.9920  probability 0.9719  probability 0.9245  probability 0.8533  propaility 0.7713

Iteration 0 Iteration 125 Iteration 250 Iteration 375 Iteration 500: lteration 625 Iteration 750: Iteration 875: Iteration 1000
predicted label 2 with predicted labei 2 with predicted [abel 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted labei 2 with predicted label 2 with predicted Iabel 2 with
probability 10000 probability 10000 probability 10000 probability 10000 probability 1.0088  probability 0.9993  probability 0.9925  probability 0.9680  probability 0.9294




Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the same level
of noise:

Iteration 1250 Iteration 2500: Iteration 3750: Iteration 5000- Iteration 6250: teration 7500 teration 8750 Iteration 10000:
prtdlded hera with predicted label 2 with predicted [abel 2 with predicted abel 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 0.9883  probability 0.9998  probability 0.9998  probability 0.9998  probability 0.9998  probability 0.9998  prabability 0.9998  probability 0.9998  probability 0.9998

Iteration 0 Iteration 1250 Iteration 2500: Iteration 3750: Iteraticn 5000: Iteration 6250: Iteration 7500. Iteration 8750. Iteration 10000,
predicted label 3 with predicted label 7 with predicted label 7 with predicted Iabel 7 with predicted label 7 with predicted label 7 with predicted Iabel 7 with predicted Iabel 7 with predicted label 7 with
probability 1.0000  probability 0.9952  probability 0.9953  probability 0.9911  probability 0.9899  probability 0.9903  probability 0.9853  probability 0.9815  propaility 0.9758



Moving on the data manifold: CIFAR10




Conclusions

@ Using a partially trained model we can construct a low dimensional
submanifold the data leaf of R” containing the data the model was
trained with.

@ We can navigate the data leaf and obtain either data or points with
similarities to our data.

@ Moving orthogonally to the data leaf will add noise to data, but the
model will not change its accuracy.

© Possible Applications:

o Denoising of images: project a noisy data point on the data leaf to
perform denoising.

o Use the distance from the data leaf to recognize out-of- distribution
examples

@ GAN: generate new images with the same label, by moving on the data
leaf.
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