
Joint work with N. Bencomo (Aston University), 
A. Bucchiarone (FBK Trento), 

C. Guidi (ItalianaSoftware) and 
J. Spillner (Zurich University of Applied Sciences) 

Ivan Lanese
Focus research group

Computer Science and Engineering Department

 Software architectures for AI: 
the case of autonomic microservices



AI and distributed systems

 Originally, AI was used to build standalone AI 
applications (e.g., chess players)

 AI functionalities are more and more embedded into 
software applications and systems (smartphones, office 
applications, robots, …)

 Such systems are frequently distributed and 
heterogeneous

 Claim: there is a non trivial interplay between the AI 
techniques and the architecture of the distributed 
systems where they are used



Distributed systems architecture

 Distributed system architecture evolved over the years 
from simple client-server to more complex patterns



Microservices

 A software architectural style advocating the structuring 
of systems as the composition of small, loosely-coupled 
microservices

 Each microservice provides a restricted and coherent set 
of capabilities

 Microservices are deployed independently, frequently 
into containers (e.g., Docker) on the Cloud or on the 
edge

 Microservices can be independently scaled and updated
 Aim: maximizing flexibility and scalability



How to add AI capabilities to microservices?

 Microservices should adapt to changing environment 
and user requirements

 AI capabilities can help in this direction, minimizing 
human intervention

 We consider the autonomic computing (self-*) approach
– Suitable to monitor changes in the environment and 

adapt accordingly 



The MAPE-K feedback control loop

 Monitor: acquires data from
the system and its environment

 Analyze: refine and extract
information from data

 Plan: decide which actions
need to be taken to reach
system goals

 Execute: takes the planned actions
 Knowledge: keeps track of the known information

 



Design decision: who is in charge? 

 A main design decision for autonomic microservices: 
who is in charge of the MAPE phases and of K?

 Different possibilities:
– The microservices

● Each microservice or dedicated microservices 
● MAPE-K as a service?

– The infrastructure
● Containers, container managers (e.g., 

Kubernetes), the Cloud infrastructure
– The IT personnel 
– A combination of the above



Some general tradeoffs

 If IT personnel is in charge: the system is not autonomic
 If the infrastructure is in charge: autonomic 

infrastructure managing dumb microservices
– Vendor lock-in: moving the system to a different 

infrastructure causes loss of autonomic capabilities 
 Microservices are in charge: not always easy

– May not have access to all the information
– Need for coordination

 Both infrastructure and microservices: need for an 
interface

– If not standard can cause again vendor lock-in



Sample instance: monitoring

 Who is in the best position to get the data?
 The infrastructure for environmental data

– E.g., allocated and used resources
 Microservices for internal data

– E.g., which functionalities are more heavily used
 IT personnel has understanding of (changing) 

requirements
– E.g., which functionalities and non-functional 

properties are more relevant at a given moment
 Having all the actors interact for monitoring may 

require complex coordination and interfaces



Future directions and challenges

 A paper on this topic is currently submitted to IEEE 
Software

 How the tradeoffs change in different application areas 
or in other architectural styles (e.g., serverless)?

 Which are suitable interface to share responsibility of 
phases among different actors?

 How to combine distribution and flexibility with timely 
and precise adaptations?

 How to provide autonomic capabilities in multicloud 
scenarios?



Finally

Thanks!

Questions?


	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Finally

