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AI and distributed systems

 Originally, AI was used to build standalone AI 
applications (e.g., chess players)

 AI functionalities are more and more embedded into 
software applications and systems (smartphones, office 
applications, robots, …)

 Such systems are frequently distributed and 
heterogeneous

 Claim: there is a non trivial interplay between the AI 
techniques and the architecture of the distributed 
systems where they are used



Distributed systems architecture

 Distributed system architecture evolved over the years 
from simple client-server to more complex patterns



Microservices

 A software architectural style advocating the structuring 
of systems as the composition of small, loosely-coupled 
microservices

 Each microservice provides a restricted and coherent set 
of capabilities

 Microservices are deployed independently, frequently 
into containers (e.g., Docker) on the Cloud or on the 
edge

 Microservices can be independently scaled and updated
 Aim: maximizing flexibility and scalability



How to add AI capabilities to microservices?

 Microservices should adapt to changing environment 
and user requirements

 AI capabilities can help in this direction, minimizing 
human intervention

 We consider the autonomic computing (self-*) approach
– Suitable to monitor changes in the environment and 

adapt accordingly 



The MAPE-K feedback control loop

 Monitor: acquires data from
the system and its environment

 Analyze: refine and extract
information from data

 Plan: decide which actions
need to be taken to reach
system goals

 Execute: takes the planned actions
 Knowledge: keeps track of the known information

 



Design decision: who is in charge? 

 A main design decision for autonomic microservices: 
who is in charge of the MAPE phases and of K?

 Different possibilities:
– The microservices

● Each microservice or dedicated microservices 
● MAPE-K as a service?

– The infrastructure
● Containers, container managers (e.g., 

Kubernetes), the Cloud infrastructure
– The IT personnel 
– A combination of the above



Some general tradeoffs

 If IT personnel is in charge: the system is not autonomic
 If the infrastructure is in charge: autonomic 

infrastructure managing dumb microservices
– Vendor lock-in: moving the system to a different 

infrastructure causes loss of autonomic capabilities 
 Microservices are in charge: not always easy

– May not have access to all the information
– Need for coordination

 Both infrastructure and microservices: need for an 
interface

– If not standard can cause again vendor lock-in



Sample instance: monitoring

 Who is in the best position to get the data?
 The infrastructure for environmental data

– E.g., allocated and used resources
 Microservices for internal data

– E.g., which functionalities are more heavily used
 IT personnel has understanding of (changing) 

requirements
– E.g., which functionalities and non-functional 

properties are more relevant at a given moment
 Having all the actors interact for monitoring may 

require complex coordination and interfaces



Future directions and challenges

 A paper on this topic is currently submitted to IEEE 
Software

 How the tradeoffs change in different application areas 
or in other architectural styles (e.g., serverless)?

 Which are suitable interface to share responsibility of 
phases among different actors?

 How to combine distribution and flexibility with timely 
and precise adaptations?

 How to provide autonomic capabilities in multicloud 
scenarios?



Finally

Thanks!

Questions?
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