
Integrazione di Approcci
Data-Driven e Knowledge-Based

in Sistemi di Supporto alle Decisioni

Michela Milano, Michele Lombardi, Andrea Borghesi, 
Allegra De Filippo, Fabrizio Detassis, Federico Baldo, Mattia 
Silvestri



Declarative Optimization

Declarative Optimization
• A family of methods for automatically tackling decision making problems
• In a nutshell:

Model SolveDeclarative Optimization = +

Example: what to put in a knapsack?
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ML for Optimization

Traditionally
• Models are designed by experts via trial and error
• ...And the same goes for algorithms

Model

Solve

+

How can data-driven methods help?
• By allowing one to take into account
• By dealing with uncertainty via statistical approaches

In this talk
• Methods that use ML to 
• Methods that use ML to 
• Methods that use ML to Model Solve

Only very few representative approaches for each class

data



ML for Modeling



Constraint Acquisition

A first class of approaches: Constraint Acquisition
• Start from a collection of solutions (optionally non-solutions)
• Use an algorithm to obtain a declarative model

Constraint 
Acquisition 
Algorithm

solution/non-solutions Problem Model



Constraint Acquisition

Constraint Acquisition: an example

1 2 3

3 1 2

2 3 1

2 3 1
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alldiff {��� ∀� =  1. . 3}  ∀� ∈ {1. . 3}

alldiff {��� ∀� =  1. . 3}  ∀� ∈ {1. . 3}

In other words: never twice the same 
number on each row & column

2 3 2

2 1 1

3 2 1

Input: solutions + non-solutions Ouput: declarative model



Constraint Acquisition

A first class of approaches: Constraint Acquisition
• Start from a collection of solutions (optionally non-solutions)
• Use an algorithm to obtain a declarative model

Constraint 
Acquisition 
Algorithm

solution/non-solutions Problem Model

Some comments
• Scalability is still an issue
• Need to choose the pool of avaialable constraints
• Some data and proble constraints can be provided by a user



Empirical Model Learning

A second class of approaches: Empirical Model Learning
• Start from: an incomplete declarative model + a ML model
• Embed the ML model in the declarative model

EML
Partial problem model

Integrated Model

ML model



Empirical Model Learning

Empirical Model Learning: an Example
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Input: partial problem model
Ouput: integrated model

Input: ML model to estimate impact on traffic



Empirical Model Learning

A second class of approaches: Empirical Model Learning
• Start from: an incomplete declarative model + a ML model
• Embed the ML model in the declarative model

EML
Partial problem model

Integrated Model

ML model

Some comments
• Scales much better, but large models still an issue
• Enables reasoning on the ML model
• Can be used for verification of ML models



ML for Solving



Algorithm Configuration

A first class of approaches: Parameter tuning/algorithm configuration
• Find the best solver parameters for a problem class
• Typically: optimize over solver parameters, for a set of benchmark instances

Model Solve

Meta-solver

benchmark
parameters

performance metric



Algorithm Configuration

Parameter tuning/algorithm configuration: an example

Instance 1

Model Solve
problem
instance

Instance 1
Instance 1

Instance 1

solution time
solution quality

energy

#CPUs to use

Input: a parallel algorithm

Input: a benchmark

N

Output: optimal #CPUs



Algorithm Configuration

A first class of approaches: Parameter tuning/algorithm configuration
• Find the best solver parameters for a problem class
• Typically: optimize over solver parameters, for a set of benchmark instances

Model Solve

Meta-solver

benchmark
parameters

performance metric

Some comments
• Mature tools available
• Basis for Auto-ML
• Connections to similar technique stil underexplored



End-to-End Approaches



Smart “Predict, then Optimize”

A first class of approaches: Smart “Predict, then Optimize”
• HP: a ML model estimates model parameters
• Typically: optimize over solver parameters, for a set of benchmark instances

Model Solve

Train

training set

loss function

ML Model
paramsgradient update



Smart “Predict, then Optimize”

Smart “Predict, then Optimize”: an example
Input: ML model to predict traffic

Input: a TSP solver

Output: an ML model optimized for the TSP solver



Smart “Predict, then Optimize”

A first class of approaches: Smart “Predict, then Optimize”
• HP: a ML model estimates model parameters
• Typically: optimize over solver parameters, for a set of benchmark instances

Model Solve

Train

training set

loss function

ML Model
paramsgradient update

Some comments
• Recent and active area of research
• Decent scalability, but still a bottleneck



“Optimize, then Predict”

A second class of approaches: “Optimize, then Predict”
• Basis: Empirical Model Learning
• Addition: retrain after evaluation (requires experimentation)

Model Solve Train

ML Model

solution

parameter adjustment

Some comments
• Main motivation: adapt to mistakes, be accurate only where needed
• Main challenge: meaningful ML model changes based on few examples
• Preliminary results, but still open
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