New Mathematics from Lambda Calculus

Antonino Salibra Università Ca'Foscari, Venezia In honor of Simone Martini

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Definition

An algebra **A** is a *Church algebra* if it admits a ternary operator q(x, y, z) and two constants 0, 1 such that, for all $x, y \in A$:

$$q(1, x, y) = x$$
 $q(0, x, y) = y$

Examples :

- Rings : q(x, y, z) = xy + (1 x)z.
- Boolean algebras : $q(x, y, z) = (x \land y) \lor (\neg x \land z)$.
- Lambda models : $1 = [\lambda xy \cdot x]; \quad 0 = [\lambda xy \cdot y]; \quad q(x, y, z) = [(xy)z]$.
- Combinatory algebras : $1 = \mathbf{k}$; $0 = \mathbf{sk}$; q(x, y, z) = (xy)z.

The problem

Given a class of models of the pure λ -calculus, is it the case that *every* λ -theory is representable in it?

Some (ad hoc) incompleteness results :

- Scott semantics (Honsell and Ronchi della Rocca 1992),
- Stable semantics (Gouy 1995),
- Strongly stable semantics (Salibra 2001).

A general incompleteness result :

Theorem (Manzonetto and Salibra 2006)

The λ -models arising from cpo-based semantics are *indecomposable*, and there exist λ -theories admitting only *decomposable* models.

Decomposition

$$\begin{array}{c} \mathbf{A} \cong \mathbf{B} \times \mathbf{C} \\ & \updownarrow \\ \exists \theta, \overline{\theta} \text{ such that } \mathbf{B} \cong \mathbf{A}/\theta \text{ and } \mathbf{C} \cong \mathbf{A}/\overline{\theta} \\ & \updownarrow \\ & \updownarrow \\ \exists \theta, \overline{\theta} \text{ as above, and moreover } \theta \cap \overline{\theta} = \Delta \text{ and } \theta \circ \overline{\theta} = \nabla \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $(\theta, \overline{\theta})$ is called a pair of complementary factor congruences (CFC-pair).

An algebra A is

- indecomposable if it does not admit any non trivial CFC-pair.
- simple if $Con(\mathbf{A}) = \{\Delta, \nabla\}.$

Central elements

Definition

An element *c* of a double-pointed algebra is *central* if $(\theta(1, c), \theta(0, c))$ is a CFC-pair.

Within Church Algebras

The BA of central elements \Rightarrow The BA of CFC-pairs

$$\begin{array}{rcl} c \in \operatorname{Ce}(\mathbf{A}) & \mapsto & (\theta(1,c), \theta(0,c)) \\ & (\theta,\overline{\theta}) & \mapsto & \text{The unique } c \text{ such that } 1\theta c\overline{\theta} 0 \end{array}$$

BA-operations on central elements

$$x \wedge y = q(x, y, 0);$$
 $x \vee y = q(x, 1, y);$ $\neg x = q(x, 0, 1)$

Equational characterization

 $c \in \mathbf{A}$ is central iff

1.
$$q(c, 1, 0) = c$$

$$2. \quad q(c, x, x) = x$$

3. $q(c, q(x_1, x_2, x_3), q(y_1, y_2, y_3)) = q(q(c, x_1, y_1), q(c, x_2, y_2), q(c, x_3, y_3))$

The λ -term $\Omega = (\lambda x.xx)(\lambda x.xx)$ is *easy* : it can be consistently equated to any other closed λ -term.

Fact

In the term model of the λ -theory $\theta(1, \Omega) \cap \theta(0, \Omega)$, where $1 = \lambda xy.x, 0 = \lambda xy.y, \Omega$ is a *non-trivial* central element (hence the term model of that λ -theory is decomposable).

Lemma

Indecomposable lambda-algebras are closed by subalgebras.

Corollary

Any model of the λ -theory $\theta(1, \Omega) \cap \theta(0, \Omega)$ is decomposable (since if \mathcal{M} is a model of the λ -calculus then the term model of $\operatorname{Th}(\mathcal{M})$ is a subalgebra of \mathcal{M}).

Scott $\lambda\text{-algebras}$ are simple, hence indecomposable

Proof :

- Let $\phi \neq \Delta$ be a congruence on a Scott λ -algebra **A**. Suppose $a\phi b$ with $a \leq b$.
- Given $c \in \mathbf{A}$, $g_c(x) = \begin{cases} c & \text{if } x \leq b \\ \bot & \text{otherwise} \end{cases}$ is continuous.
- Let $d \in \mathbf{A}$ representing g_c (for all $x, dx = g_c(x)$).
- Hence $c = da \phi db = \perp$, and $\phi = \nabla$ by the arbitrariness of c.

Theorem

The Scott semantics of the λ -calculus is incomplete.

(no Scott model may have $\theta(1, \Omega) \cap \theta(0, \Omega)$ as theory) More generally :

Theorem

The class of all indecomposable λ -models (including Scott, stable, strongly stable semantics) is incomplete.

Incompleteness 2

Let (G, \rightarrow) be a directed graph. We define :

 $x \leftrightarrow_1 y$ if either $x \rightarrow y$ or $y \rightarrow x$; $x \leftrightarrow_{k+1} y$ if $\exists z \ x \leftrightarrow_k z \leftrightarrow_1 y$

Theorem

The class of all partially ordered λ -models with bottom is incomplete.

Proof : Let (G, \rightarrow) be a directed graph with a binary operation \bullet on nodes and with a designated node 0 such that

• $x \rightarrow y \Rightarrow z \bullet x \rightarrow z \bullet y$ and $x \bullet z \rightarrow y \bullet z$ • $x \bullet x = 0$ • $x \rightarrow y$ and $y \rightarrow x \Rightarrow x = y$ We define : $x \bullet_1 y = x \bullet y$; $x \bullet_{n+1} y = 0 \bullet (x \bullet_n y)$. • $x \rightarrow y \Rightarrow z \bullet_n x \rightarrow z \bullet_n y$ and $x \bullet_n z \rightarrow y \bullet_n z$ • $x \bullet_n x = 0$ (a) $x \rightarrow y \Rightarrow_{(1)} 0 = x \bullet x \rightarrow x \bullet y \rightarrow y \bullet y = 0 \Rightarrow_{(3)} x \bullet y = 0$ and $y \bullet x = 0$ (b) $x \leftrightarrow_n z \leftrightarrow_1 y$ implies $0 =_{(\text{Ind})} x \bullet_n z \leftrightarrow_1 x \bullet_n y$ implies $0 =_{(a)} 0 \bullet (x \bullet_n y) = x \bullet_{n+1} y$ (c) $\forall n.x \bullet_n y \neq 0$ implies that there is no path of \leftrightarrow_1 from x to y. (d) The lambda theory axiomatised by 0xx = 0, where $0 \equiv \Omega$ is the looping

term and $x \bullet y = 0xy$, does not admit po-models with bottom.

Let **A** be a Church algebra. A finite subset $X \subseteq_{fin} A$ is an easy set if

 $\forall (b \subseteq X) \ \theta(b, 1) \lor \theta(X \setminus b, 0)$ is a consistent congruence

Theorem (Manzonetto-Salibra)

Let **A** be a Church algebra and *X* be an easy set. Then there exists a congruence ϕ such that the principal filter $\phi \uparrow$ (of the congruences $\psi \supseteq \phi$) is isomorphic to the free Boolean algebra with *X* generators.

Corollary

The lattice of lambda theories contains (at the top) Boolean lattices of any finite cardinality.

(日) (日) (日) (日) (日) (日) (日)

Definition

An algebra **A** is a *Church algebra of dimension* n (n-CA) if it admits a (n + 1)-ary operator $q(x, y_1, ..., y_n)$ and n constants $e_1, ..., e_n$ such that for all $1 \le i \le n$

 $q(e_i, y_1, \ldots y_n) = y_i$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Examples :

If **A** is an *n*-CA, then $c \in A$ is called *n*-central if the sequence $(\theta(c, e_1), \ldots, \theta(c, e_n))$ is a tuple of complementary factor congruences of **A**, meaning that :

- $\bigcap_{i\leq n} \theta(\boldsymbol{c}, \boldsymbol{e}_i) = \Delta;$
- for all *a*₁,..., *a*_n ∈ *A*, *q*(*c*, *a*₁,..., *a*_n) is the unique element such that *a*_i θ(*c*, *e*_i) *q*(*c*, *a*₁,..., *a*_n) for all 1 ≤ *i* ≤ *n*;

If *c* is *n*-central, then $\mathbf{A} \cong \mathbf{A}/\theta(c, e_1) \times \ldots \times \mathbf{A}/\theta(c, e_n)$.

Equational characterisation

 $c \in \mathbf{A}$ is *n*-central iff :

1:
$$q(c, e_1, ..., e_n) = c$$
.
2: $q(c, x, x, ..., x) = x$ for every $x \in A$.
3:

$$q(c, q(x_1^1, \dots, x_{n+1}^1), \dots, q(x_n^n, \dots, x_{n+1}^n)) = q(q(c, x_1^1, \dots, x_1^n), \dots, q(c, x_{n+1}^1, \dots, x_{n+1}^n)).$$

Proposition

The set of *n*-central elements of a *n*-CA **A** is a subalgebra of the reduct of **A** (i.e. : if x, y_1, \ldots, y_n are *n*-central, then $q(x, y_1, \ldots, y_n)$ is *n*-central.)

Definition

A Boolean algebra of dimension n (n-BA) is a n-CA whose elements are all n-central.

Examples :

• The *n*-BA ($\{e_1, \ldots, e_n\}, q, e_1, \ldots, e_n$) of generalized truth values.

(日) (日) (日) (日) (日) (日) (日)

• The *n*-CA of *n*-partitions of a set U: { (X_1, \ldots, X_n) : $X_i \subseteq U$, $\bigcup_i X_i = U$, $X_i \cap X_j = \emptyset$ };

A representation theorem

Any *n*-BA is isomorphic to a field of *n*-partitions.

The 2-elements Boolean algebra is *primal* : all Boolean functions are definable by AND, OR, NOT. This property is inherited by *n*-BAs.

Primality in n-BAs

The *n*-BA ($\{e_1, \ldots, e_n\}, q, e_1, \ldots, e_n$) is primal and generates the variety of *n*-BAs.

(日) (日) (日) (日) (日) (日) (日)

Happy Birthday Simone !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ