Proofs and surfaces

Djordje Baralić, Marina Milićević, Zoran Petrić, Mladen Zekić, Rade Živaljević

Mathematical Institute of the Serbian Academy of Sciences and Arts

Pierre-Louis Curien

 πr^2 , IRIF (INRIA, Université Paris Diderot, CNRS)

Jovana Obradović

Institute of Mathematics of the Czech Academy of Sciences

Colloquium in onore di Simone Martini, 18 gennaio 2020

Incidence theorems

Incidence theorems in Euclidean or projective geometry state that some incidences follow from other incidences, where an incidence is a pair of a line and a point, together with the information whether the point lies on the line or not.

The Menelaus theorem

Pick a point P on the line BC, and so for Q and RCharacterise the alignment of P, Q, R

Menelaus configurations

For three points in the Euclidean plane $\mathbb{R}^2, \mathsf{let}$

$$(X, Y; Z) =_{df} \begin{cases} \frac{XZ}{YZ}, & \text{if } Z \text{ is between } X \text{ and } Y \\ -\frac{XZ}{YZ}, & \text{otherwise.} \end{cases}$$

if X, Y and Z are mutually distinct and colinear. Otherwise, we set (X, Y; Z) to be undefined. A sextuple (A, B, C, P, Q, R) (ABCPQR for short) of points in \mathbb{R}^2 is a Menelaus configuration when

(B, C; P), (C, A; Q) and (A, B; R) are defined

and their product is -1.

Theorem. For a triangle ABC (with A, B, C not colinear), and points P, Q and R (different from the vertices) on the lines BC, CA and AB respectively, it holds that

 $P, Q, R \text{ are colinear iff } (B, C; P) \cdot (C, A; Q) \cdot (A, B; R) = -1.$ This theorem is an easy consequence of Thales' theorem. Given a sextuple S = ABCPQR, we set

$$col(S) = col^+(S) \cup \{col^-(S)\}\$$

 $col^+(S) = \{ABR, BCP, CAQ, PQR\}\$
 $col^-(S) = \neg ABC$

colinearities positive colinearities negative colinearity.

By Menelaus theorem, we have the following dictionary :

- If *col*(*S*) is satisfied, then *S* is a Menelaus configuration;
- If S is a Menelaus configuration and if $col^{-}(S)$ is satisfied, then all positive collinearities of S are satisfied.

Goal of this work

Our intention is to formalise and extend, within proof theory, an idea of Richter-Gebert on incidence theorems, which we paraphrase as follows:

If \mathcal{M} is a triangulated manifold that forms a 2-cycle, and therefore is orientable, then the presence of Menelaus configurations on all but one of the triangles automatically implies the existence of a Menelaus configuration on the final triangle.

Proving incidence theorems: guiding example

Consider the following picture in the Euclidean plane, displaying colinearities (positive and negative):

By the dictionary, we have :

$$(C, D; W) \cdot (D, B; V) \cdot (B, C; P) = -1$$

 $(D, C; W) \cdot (A, D; U) \cdot (C, A; Q) = -1$
 $(B, D; V) \cdot (D, A; U) \cdot (A, B; R) = -1,$

which, after multiplication and cancellation, delivers

$$(B, C; P) \cdot (C, A; Q) \cdot (A, B; R) = -1.$$

By the dictionary again, P, Q, R are colinear.

Cyclic sequents

We could have picked any other triple of triangles forming the faces of *ABCD* viewed as a tetrahedron, assuming the corresponding colinearities, and would have derived the colinearity for the missing one.

In logical terms, we have that the following sequent is satisfied:

⊢ ABCPQR, ABDVUR, ACDWUQ, BCDWVP

where satisfaction means here that whenever 3 out of these 4 sextuples is a Menelaus configuration, then so is the fourth.

This holds more generally in the setting of closed 2-manifolds.

But we can start from any semi-simplical set K and from a 2-cycle on the associated chain complex of \mathbb{Z} -modules $C_n = \mathbb{Z}[K_n]$.

Semi-simplicial sets a.k.a. Δ -complexes

An (abstract) Δ -complex K consists of mutually disjoint sets K_0, K_1, \ldots and functions $d_i^n \colon K_n \to K_{n-1}, n \ge 1, 0 \le i \le n$, which for $l-1 \ge j$ satisfy

$$d_j^{n-1}\circ d_l^n=d_{l-1}^{n-1}\circ d_j^n.$$

The elements of K_n are the *n*-cells of K, and the functions d_i^n are called *faces*. The intuitive meaning of K_n is that this is the set of (ordered) *n*-dimensional simplices, and a face d_i^n maps such a simplex to the facet opposite to its *i*th vertex.

For every $n \ge 0$, let C_n be the free abelian group generated by K_n and let the *boundary* homomorphism $\partial_n : C_n \to C_{n-1}$ be defined on generators by

$$\partial_n x = \sum_{i=0}^n (-1)^i d_i x.$$

A 2-cycle c is an element of C_2 such that $\partial c = 0$.

Let K be a semi-simplicial set, and suppose that we have a 2-cycle c on the associated chain complex (note that there may be none). We can write

$$c = \varepsilon_1 x_1 + \varepsilon_2 x_2 + \ldots + \varepsilon_{n-1} x_{n-1} + \varepsilon_n x_n$$

were all x_i 's are in K_1 and all ε_i 's are 1 or -1. There may be repetitions!

Remark. In this writing, *n* must be even. This is because writing ∂c yields a sum of m = 3n terms, and because cancellations imply that *m* is even.

For an arbitrary function $v: K_0 \cup K_1 \to \mathbb{R}^2$ (consider the image of a 1-cell as a witness of that cell), consider the following operator $\mu: K_2 \to (\mathbb{R}^2)^6$ defined as

$$\mu x = (vd_1d_2x, vd_0d_2x, vd_0d_0x, vd_0x, vd_1x, vd_2x).$$

Homology meets Menelaus: una figura aiuta!

 $\mu x = ABCPQR$

Homology meets Menelaus: the statement

Proposition. In reference to our chosen cycle

$$c = \varepsilon_1 x_1 + \ldots + \varepsilon_n x_n,$$

for any $1 \le i \le n$, if all μx_j 's, for $j \ne i$ are Menelaus configurations, then μx_i is a Menelaus configuration, too.

Idea: c'è un morfismo parziale

1-chains (additivo) $\mapsto \mathbb{R} \setminus \{0\}$ (multiplicativo)

$$\partial x = BC - AC + AB$$

 $h(BC) = (B, C; P)$
 $h(\partial x) = -1$ ssi ABCPQR è una configurazione di Menelaus

A suitable class of semi-simplicial sets

An \mathcal{M} -complex (for Menelaus) is a connected semi-simplicial set L such that:

- (0) L has a finite number of cells;
- (1) for every $m \ge 3$ the set L_m is empty and every element of $L_0 \cup L_1$ is a face of some element of $L_1 \cup L_2$;
- (2) distinct faces map an element of L_{i+1} to distinct elements of L_i $(i \le 1)$;
- (3) every 1-cell of L is a face of exactly two 2-cells of L;
- (4) for every w ∈ L₀, the set L_w = {u ∈ L₂ | w is a vertex of u} is linked in the sense that if u, u' ∈ L_w, then there is a sequence of 2-cells starting at u and ending at u', such that every two consecutive 2-cells share an edge having w as a vertex;
- (5) L is orientable, i.e., the second homology group H₂(L; Z), which consists of all 2-cycles of L, is isomorphic to Z.

Given a semi-simplical set K, a cycle c, and a choice of an expression of c as $\varepsilon_1 x_1 + \ldots + \varepsilon_n x_n$, we can construct

- an \mathcal{M} -complex L with n distinct 2-cells u_1, \ldots, u_n , with
 - $d = \epsilon_1 u_1 + \ldots + \epsilon_n u_n$ as a generator of $H_2(L; \mathbb{Z})$,
- as well as a morphism $f: L \to K$ mapping u_i to x_i .

So, any Euclidean interpretation relative to c can be turned into an interpretation of d. Hence, for the purpose of proving incidence theorems, we do not lose any generality by restricting our attention to \mathcal{M} -complexes, which are also a well-behaved class of semi-simplicial sets:

Proposition. The geometric realisation of an \mathcal{M} -complex is a closed orientable 2-manifold.

Reformulation of the statement

In the case of $\mathcal M\text{-}\mathsf{complexes},$ the above statement can be reformulated as follows:

Proposition. If *L* is an \mathcal{M} -complex, with set of 2-faces $\{x_1, \ldots, x_n\}$, then we have: for any $1 \le i \le n$, if all μx_j 's, for $j \ne i$ are Menelaus configurations, then μx_i is a Menelaus configuration, too.

Permutation and switching of triangles

- If $A_1A_2A_3B_1B_2B_3$ is a Menelaus configuration and π is a permutation of the set $\{1, 2, 3\}$, then $A_{\pi(1)}A_{\pi(2)}A_{\pi(3)}B_{\pi(1)}B_{\pi(2)}B_{\pi(3)}$ is a Menelaus configuration.
- If *ABCPQR* is a Menelaus configuration, then *BPRQAC*, *ARQPCB* and *CPQRAB* are Menelaus configurations (as illustrated below).

We fix an arbitrary countable set W. Let

$$F^{6}(W) = W^{6} - \{X_{1} \dots X_{6} \in W^{6} \mid X_{i} = X_{j} \text{ for some } i \neq j\}.$$

The (atomic) formulas of our language are the elements of $F^6(W)$. In the talk, we limit ourselves to atomic formulas. We let $\varphi, \psi, \theta, \ldots$ range over formulas.

A sequent is a finite multiset Γ of formulas, written $\vdash \Gamma$.

There are two sorts of axioms:

• For every \mathcal{M} -complex L such that $L_0 \cup L_1 \subseteq W$, let $\nu \colon L_2 \to F^6(W)$ be defined as $\nu x = (d_1d_2x, d_0d_2x, d_0d_0x, d_0x, d_1x, d_2x)$. Then we set

$$\vdash \{\nu x \mid x \in L_2\}$$

• The following axioms account for permutations of vertices and switching of triangles.

⊢ ABCPQR, BCAQRP ⊢ ABCPQR, ARQPCB

• In this system, the cut rule looks like this:

$$\frac{\vdash \mathsf{\Gamma}, \varphi \quad \vdash \Delta, \varphi}{\vdash \mathsf{\Gamma}, \Delta}$$

Soundness

Proposition. The Menelaus system is sound.

By this we mean that for every provable sequent $\vdash \Gamma$ and any interpretation (i.e., a sufficiently defined partial function from W to \mathbb{R}^2), for all $\phi \in \Gamma$, if the interpretation of each formula in $\Gamma \setminus \{\phi\}$ is a Menelaus configuration, then the interpretation of ϕ is a Menelaus configuration.

Formal system (continued)

$$\begin{array}{ccc} \displaystyle \frac{\vdash \Gamma & \vdash \Delta}{\vdash \Gamma, \Delta} \\ \\ \displaystyle \frac{\vdash \Gamma, \varphi & \vdash \Gamma, \psi}{\vdash \Gamma, \varphi \land \psi} & \quad \frac{\vdash \Gamma, \varphi & \vdash \Delta, \psi}{\vdash \Gamma, \Delta, \varphi \leftrightarrow \psi}. \end{array}$$

Comments The first rule is (the cyclic version of) the mix rule and the second rule is reminiscent of the &-rule of linear logic.

Soundness (continued)

The soundness extends to connectives, by interpreting the connective $\ensuremath{\mathbb{X}}$ as follows:

For every $\varphi \in \Gamma$, every Euclidean interpretation that satisfies every formula in $\Gamma \setminus \{\varphi\}$ also satisfies φ , where every occurrence of \mathbb{X} in $\Gamma \setminus \{\varphi\}$ is interpreted as disjunction \lor and every occurrence of \mathbb{X} in φ is interpreted as conjunction \land . Concerning the connective \leftrightarrow , it is always interpreted as classical equivalence.

Decidability

- For a multiset Γ of formulae, let $\lambda(\Gamma)$ be the set of elements of W occurring in Γ and let $\kappa(\Gamma)$ be the number of elements (possibly with repetition) of Γ .
- **Lemma**. For every sequent $\vdash \Delta$ that occurs in a derivation of $\vdash \Gamma$, we have that $\lambda(\Delta) \subseteq \lambda(\Gamma)$ and $2 \leq \kappa(\Delta) \leq \kappa(\Gamma)$.

Proposition. The Menelaus system is decidable.

This follows from the lemma (finiteness of the search space), and from the decidability of the properties defining an \mathcal{M} -complex.

Desargues theorem

Desargue's theorem. If *ABC* and *UVW* are two triangles such that $A \neq U$, $B \neq V$ and $C \neq W$, if $BC \cap VW = \{P\}$, $AC \cap UW = \{Q\}$ and $AB \cap UV = \{R\}$, then the lines *AU*, *BV* and *CW* are concurrent if and only if the points *P*, *Q* and *R* are collinear.

Proof of Desargues theorem

24 / 42

A proof using cuts

Let AU, BV and CW be concurrent lines in \mathbb{R}^2 , and let X and E be such that B, X and E are collinear. For $\{P\} = BC \cap VW$, $\{Q\} = AC \cap UW$, $\{R\} = AB \cap UV$, $\{Y\} = AX \cap RE$, $\{Z\} = XC \cap EP$, the points Q, Y and Z are collinear. The proof is obtained by cutting three axioms:

⊢ ABDVUR, BCDWVP, ACDWUQ, ABCPQR⊢ ABCPQR, BPRQAC⊢ BREYXA, BPEZXC, RPEZYQ, BPRQAC

Connected sums

The previous example used cuts and the possibility to switch triangles in a sextuple. If we remove the axioms for permutation and switching of triangles, and stay with the system with cut and only the axioms coming from \mathcal{M} -complexes, then cuts are ... useless!

Indeed, let L_1 and L_2 be two \mathcal{M} -complexes sharing exactly one 2-cell. Then the result of cutting the two axioms associated with L_1 , L_2 is the sequent associated with the connected sum of L_1 , L_2 along this 2-cell.

Therefore we can reduce the logical system to allow only non decomposable $\mathcal{M}\text{-}\mathsf{complexes}$ to give rise to axioms.

But this suggests also to study the structure of \mathcal{M} -complexes under the opertation of cut / connected sum: they form a cyclic operad, generated by the indecomposable \mathcal{M} -complexes. Is this operad fre. The answer is no, and we provide an equational presentation for it.

For our last example, we need to reason about colinearities, i.e., to be able to derive colinearities from colinearities.

We introduce an additional judgement

$$\Xi \mid \cdots \zeta,$$

where Ξ (resp. ζ) is a set of atoms (resp. an atom) of the form *ABC* or $\neg ABC$ where *A*, *B*, *C* are distinct elements of *W* (the order of letters does not matter).

We say that an interpretation satisfies *ABC* (resp. $\neg ABC$) when the points *A*, *B*, *C* are distinct and collinear (resp. not collinear), and that $\equiv | \cdots \zeta \rangle$ is valid if every interpretation that satisfies all atoms of \equiv also satisfies ζ .

Mixed proof system: the rules

We add the following axioms and rules:

$$\frac{\Xi \mid --ABC}{\Xi \mid --BCD}$$

 $\overline{\Xi, ABC} \mid \dots ABC$ $\overline{\Xi, A'B'C'} \mid \dots ABC$ $\overline{\Xi, \neg ABC} \mid \dots \neg A'B'C'$

 $\frac{\vdash \Gamma, \phi \quad \exists \mid \neg \xi \text{ for all } \psi \in \Gamma \text{ and } \xi \in col(\psi) \quad \exists \mid \neg col^{-}(\phi) \quad \zeta \in col^{+}(\phi)}{\exists \mid \neg \zeta}$

Illustrating the mixed system

Consider two triples (A, B, C) and (D, E, F) of colinear points, all mutually distinct. Assume that, for $\{X\} = CD \cap AE$ and $\{Z\} = BE \cap CF$, the lines *AB*, *DE* and *XZ* are not concurrent. Let $\{K\} = BE \cap CD$, $\{L\} = AF \cap CD$, $\{M\} = AF \cap BE$, $\{U\} = AE \cap CF$, $\{V\} = AE \cap BD$, $\{W\} = CF \cap BD$. Then the lines *KU*, *LV* and *MW* are concurrent.

For the proof, we need to name other points (as in the picture in the last slide): $\{1\} = XZ \cap AB$, $\{2\} = AB \cap DE$, $\{3\} = XZ \cap DE$, $\{O\} = KU \cap LV$, and $\{Y\} = 13 \cap BD$.

We use an axiom coming from a triangulation of the torus:

Axiom 1 ⊢ 123*EXA*, 123*EZB*, 123*DYB*, 123*DXC*, 123*FZC*, 123*FYA*.

We also use the axiom for the tetrahedron UXZK:

Axiom 2 ⊢ UXKLOV, UXZYWV, KXZYML, UZKMOW.

And in the middle we use reasoning on colinearity, resulting in the following proof architecture:

$$\frac{\boxed{\exists \mid \dots MAF}}{\exists \mid \dots FYA} \xrightarrow{(Axiom 1)} \frac{\boxed{\exists \mid \dots LAF}}{\exists \mid \dots LAF}$$

$$\frac{\exists \mid \dots YML}{\exists \mid \dots WMO}$$
(Axiom 2)

Where the rule in the middle deriving YML is an easily derived rule about colinearities.

Let L_1, L_2 be two \mathcal{M} -complexes, let x (resp. y) be a 2-cell of L_1 (resp. L_2), suppose that $(L_1)_2 \setminus \{x\} \cap (L_2)_2 \setminus \{y\} = \emptyset$, and that $(L_1)_i \cap (L_2)_i = \emptyset$ for i < 2. Then the connected sum of L_1, L_2 is defined as the \mathcal{M} -complex obtained by removing x, y and by glueing their faces.

Proposition \mathcal{M} -complexes are stable under connected sums.

This gives rise to a cylic operad. We identify \mathcal{M} -complexes up to < 2-isomorphims, i.e., isomorphisms of the form (ϕ_0, ϕ_1, id) .

For a given set X, we set C(X) to be the set of < 2-isomorphism classes of M-complexes having X as set of 2-cells.

This gives rise to a collection (or species), by defining the action of a bijection $\sigma: Y \to X$ as follows. We define a representative K' of $[K]^{\sigma}$ as follows: $K'_2 = Y$, $K'_i = K_i$ for i < 2, and the face maps of K' coincide with those of K except for the maps d_i^2 which are defined by $d_i^2 u = d_i^2(\sigma(u))$.

The Menelaus cyclic operad

- Compositions are given by connected sums.
- Identities are given by the $\mathcal M\text{-}\mathsf{complexes}$ with exactly two 2-cells sharing their 3 faces.

This cyclic operad is called the Menelaus cyclic operad.

Our goal in the rest of the talk (quite independent from the considerations of the first part) is to give a presentation of the Menelaus cyclic operad by generators and relations.

We shall first characterise \mathcal{M} -complexes that cannot be obtained as connected sums of smaller \mathcal{M} -complexes.

Let K be an \mathcal{M} -complex and let $T = \{e_0, e_1, e_2\} \subseteq K_1$ be such that $\partial_1(e_0 - e_1 + e_2) = 0$, i.e. $e_0 - e_1 + e_2$ is a 1-cycle. Consider the binary relation on K_2 of sharing an edge from $K_1 - T$. Let τ be the transitive closure of this relation. We say that T is a *cut-triangle*, when τ is an equivalence relation with exactly two classes. If K contains a cut-triangle, then we say that it is *reducible*, otherwise it is *irreducible*.

Proposition. An \mathcal{M} -complex K is reducible if and only if it can be obtained as a connected sum of two simpler (with respect to the cardinality of the set of 2-cells) \mathcal{M} -complexes.

Recall the notation $L_w = \{u \in L_2 \mid w \text{ is a vertex of } u\}$, for a 0-cell w. We say that two 2-cells are w-neigbours if they share a face having w as a vertex.

Camembert lemma. The axiom (4) in the definition of \mathcal{M} -complex can be reinforced as folows. For every 0-cell w, the 2-cells of the link L_w at w can be displayed without repetition around w in a circle. Formally, we can arrange a cyclic order on $L_w = \{u_1, \ldots, u_n\}$ in such a way that u_i and u_{i+1} are w-neighbours, modulo n.

The Menelaus cyclic operad is not free

We take as generators the irreducible \mathcal{M} -complexes.

where

and where

- σ renames the 2-cells $\alpha,\,\beta,\,\gamma$ and δ of K into $\beta,\,\alpha,\,\gamma'$ and $\varphi,$ respectively,
- τ renames the 2-cells $\alpha',\,\beta',\,\gamma'$ and δ' of L into $\alpha',\,\beta',\,\delta$ and $\psi,$ respectively.

Let K be an \mathcal{M} -complex and let $T_1 \subseteq K_1$ and $T_2 \subseteq K_1$ be two cut-triangles of K. We say that T_1 is *disjoint* from T_2 if all the edges of T_1 are 1-cells of one of the two \mathcal{M} -complexes induced by T_2 .

Lemma. The relation of disjointness is symmetric.

Two cut-triangles of the same $\mathcal{M}\text{-}\mathsf{complex}$ that are not disjoint are called imbricated.

A sufficient condition for disjointness. Let T_2 be a cut-triangle. If T_1 is a cut-triangle distinct from T_2 such that whenever two vertices A, B of T_1 are vertices of T_2 , then also the edge of T_1 connecting A, B is an edge of T_2 , then T_1 is disjoint from T_2 . The following \mathcal{M} -complex contains disjoint cut-triangles, $T_1 = \{2, 3, 4\}$ and $T_2 = \{1, 5, 6\}$, that share two vertices (and no edge):

A (wrong) promise of freeness

Lemma. For two disjoint cut-triangles $T_1 \subseteq K_1$ and $T_2 \subseteq K_1$ of an \mathcal{M} -complex K, there exist \mathcal{M} -complexes K_1 , K_2 and K_3 such that

$$K = (K_{1 \ t_{1}} \circ_{t_{1}} K_{2})_{t_{2}} \circ_{t_{2}} K_{3} = K_{1 \ t_{1}} \circ_{t_{1}} (K_{2 \ t_{2}} \circ_{t_{2}} K_{3}),$$

where t_1 and t_2 are the 2-cells induced by T_1 and T_2 .

Theorem. The Menelaus cyclic operad is the quotient of the free cyclic operad generated by the irreducible \mathcal{M} -complexes, under the equivalence relation generated by the equalities of the form

$$\mathcal{T}_1 \,_{\mathit{u}} \circ_{\mathit{v}} \mathcal{T}_2 = \mathcal{T}'_1 \,_{\mathit{u}'} \circ_{\mathit{v}'} \mathcal{T}'_2,$$

for each quadruple $(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}'_1, \mathcal{T}'_2)$ of unrooted trees and quadruple (u, v, u'v') of leaves, such that both hand sides are well formed and evaluate, up to <2-isomorphism, to the same \mathcal{M} -complex K, in which the cut-triangles \mathcal{T} and \mathcal{T}' , associated with the pairs (u, v) and (u', v'), are imbricated.