Form Corso Italia 40 to Implicit Program Analysis

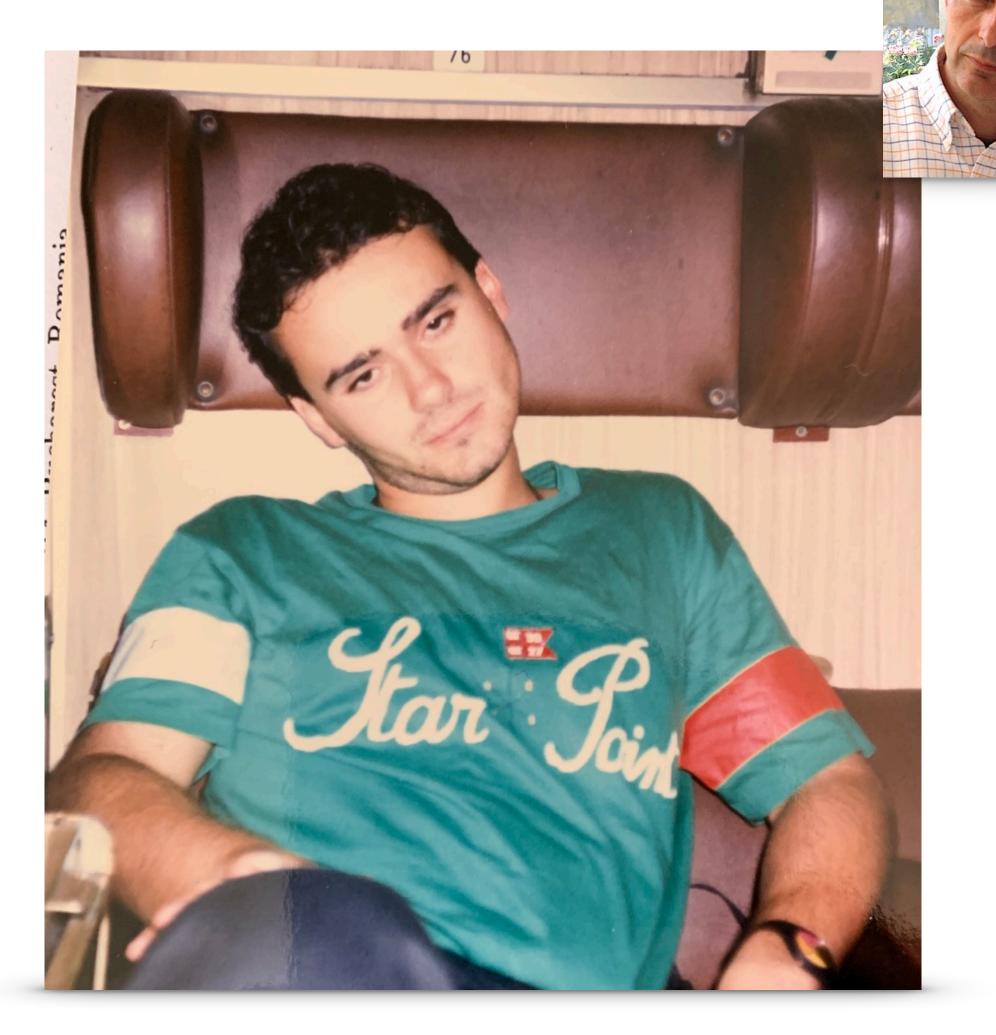
Roberto Giacobazzi

institute Ca Software

Simone's Fest — Bologna 2020

1982

1982



...1988

AN INTRODUCTION TO NATURAL DEDUCTION

Giuseppe Longo Dip. di Informatica, Pisa

Connectives : $\{\rightarrow, \land\}$.

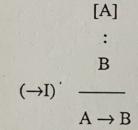
A constant predicate: \(\to

A bunch of atomic predicates.

Negation is a defined symbol: $\neg A \equiv A \rightarrow \bot$ / connective

Introduction rules

Elimination rules



$$(\rightarrow E) \quad \xrightarrow{A \quad A \rightarrow B} \quad B$$

For \perp we have two rules, both of which eliminate

Write N_0 for the Natural Deduction system defined above.

April 28, 1987

...1988

Presentata in Segreteria ii 29 11/87 Università degli studi Pisa Conr Facoltà di Scienze Matematiche Fisiche e Naturali A co A bu Corso di Laurea in Scienze dell'informazione Nega Intro (\lambda{I}) Tesi di Laurea "Un approccio dichiarativo alle interpretazioni astratte dei programmi logici" (→I]

Candidato

Giacobazzi Roberto

Relatori

For 1

(<u>L</u>)

Write

Prof. Giorgio Levi

Prof. Roberto Barbuti

2. Barbut

Controrelatore Prof. Giuseppe Longo

Golden

A.A. 1987/88

1998 ... Prof!

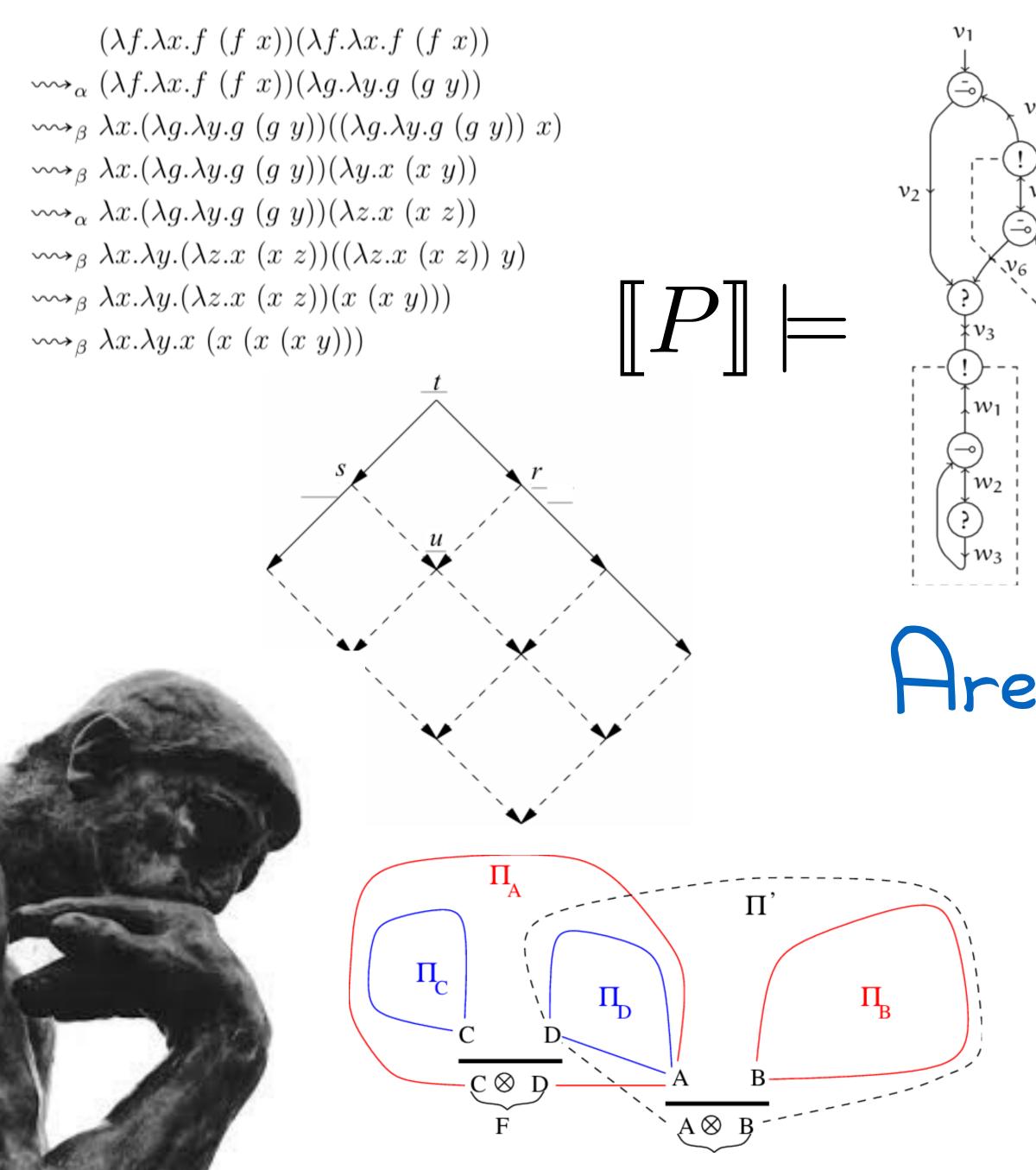
1998 ... Prof!

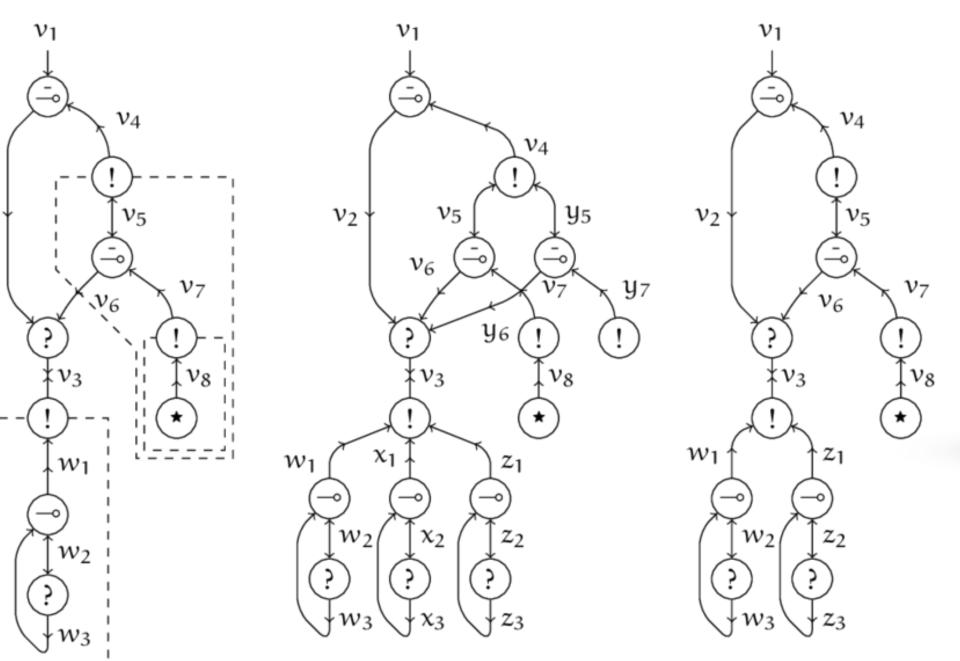
$Fondamenti\ dell'Informatica$

Linguaggi Formali, Calcolabilità e Complessità

Agostino Dovier
Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università degli Studi di Udine
Via delle Scienze, 206, Loc. Rizzi
33100 Udine, Italy
agostino.dovier@uniud.it

Roberto Giacobazzi
Dipartimento di Informatica
Università degli Studi di Verona
Strada Le Grazie 15
37134 Verona, Italy
roberto.giacobazzi@univr.it





Are we eventually working in the same field?

 $\Gamma \vdash A : \operatorname{sProp}_i$

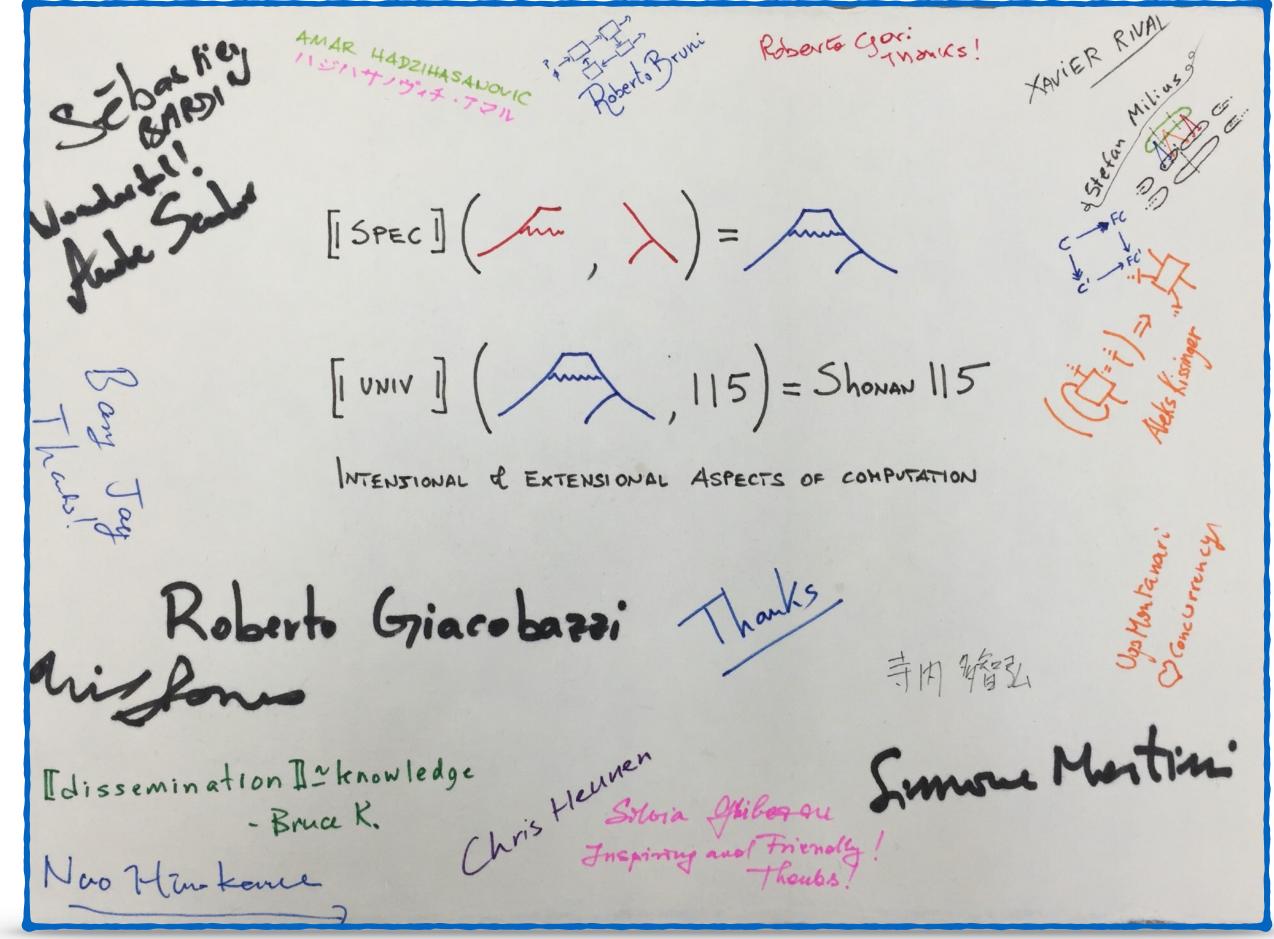
 $\Gamma \vdash \overset{\checkmark}{\bullet} : A$

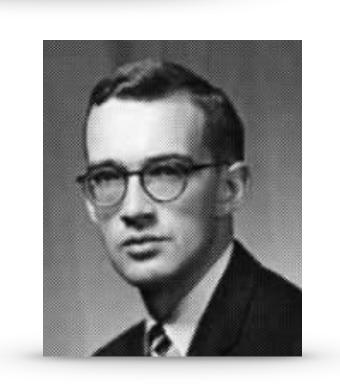
 $\Gamma \vdash P : A$

 $\Gamma \vdash \bullet \equiv \bullet : A$

The Standard Model is to PL what movement without friction is to mechanics.

ionus! KANIER RIVAL

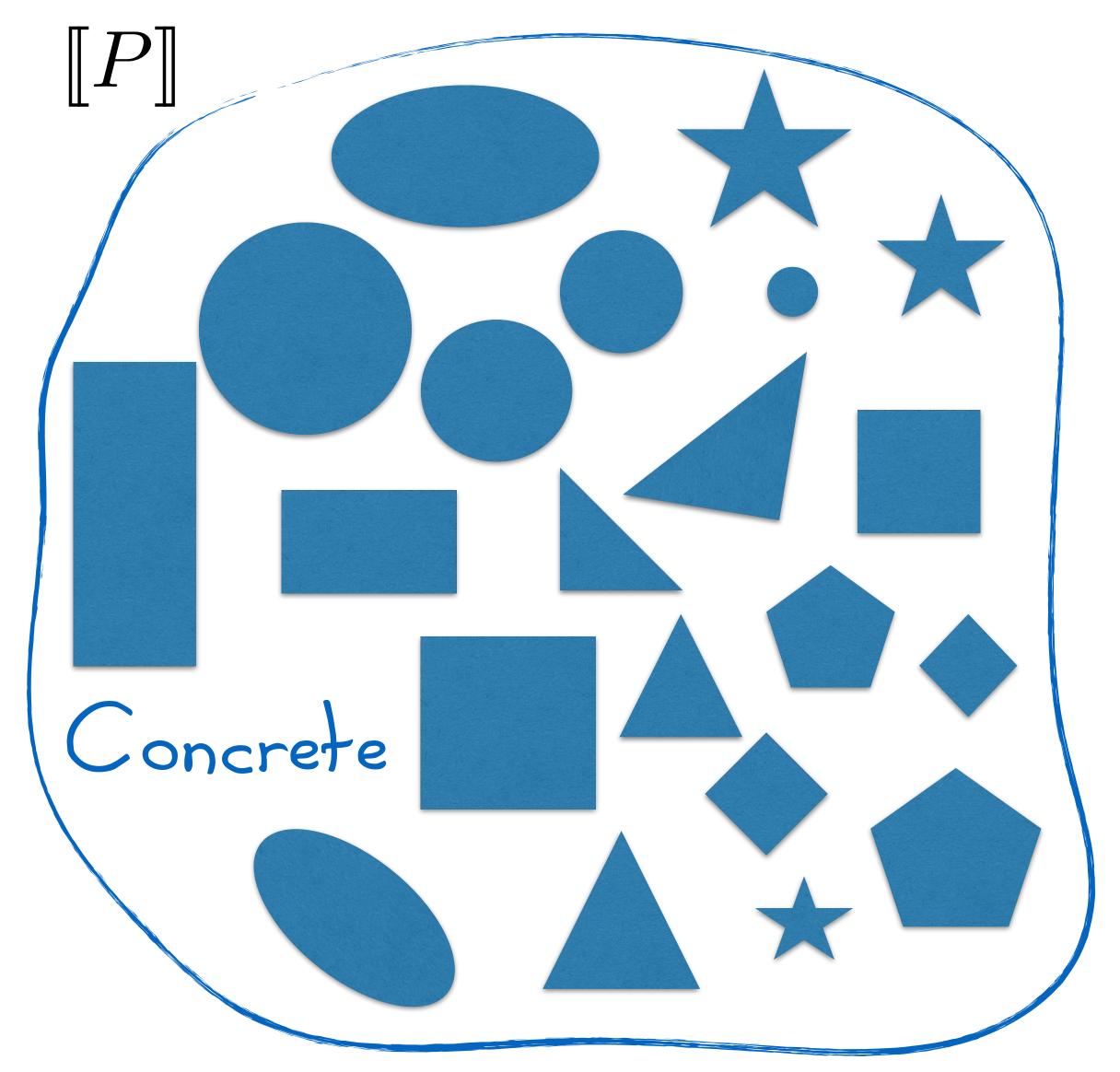


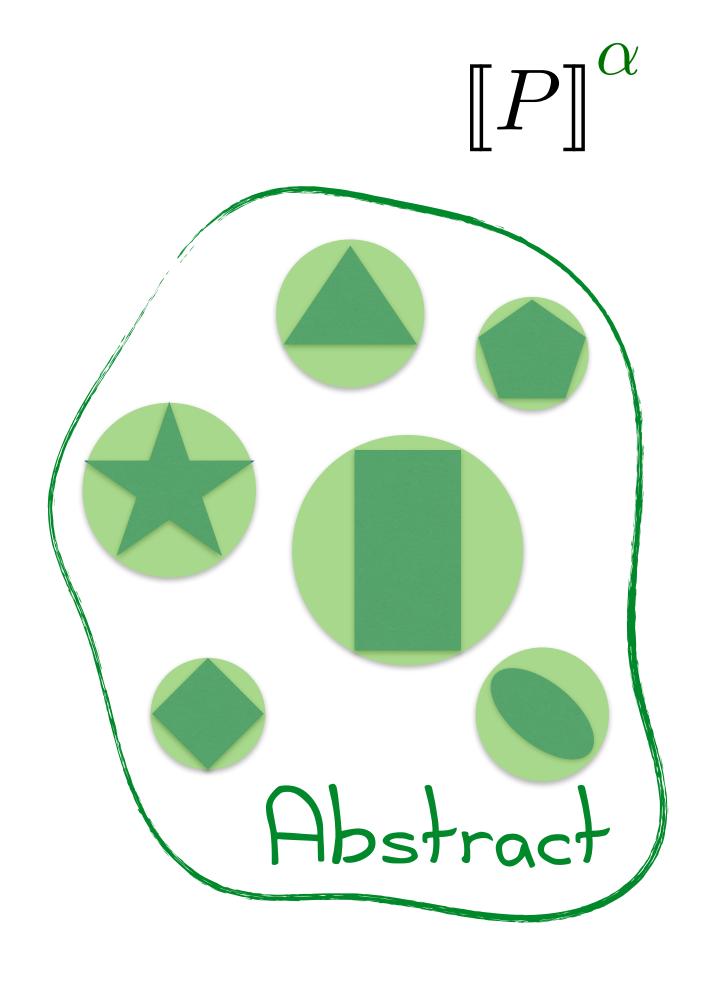


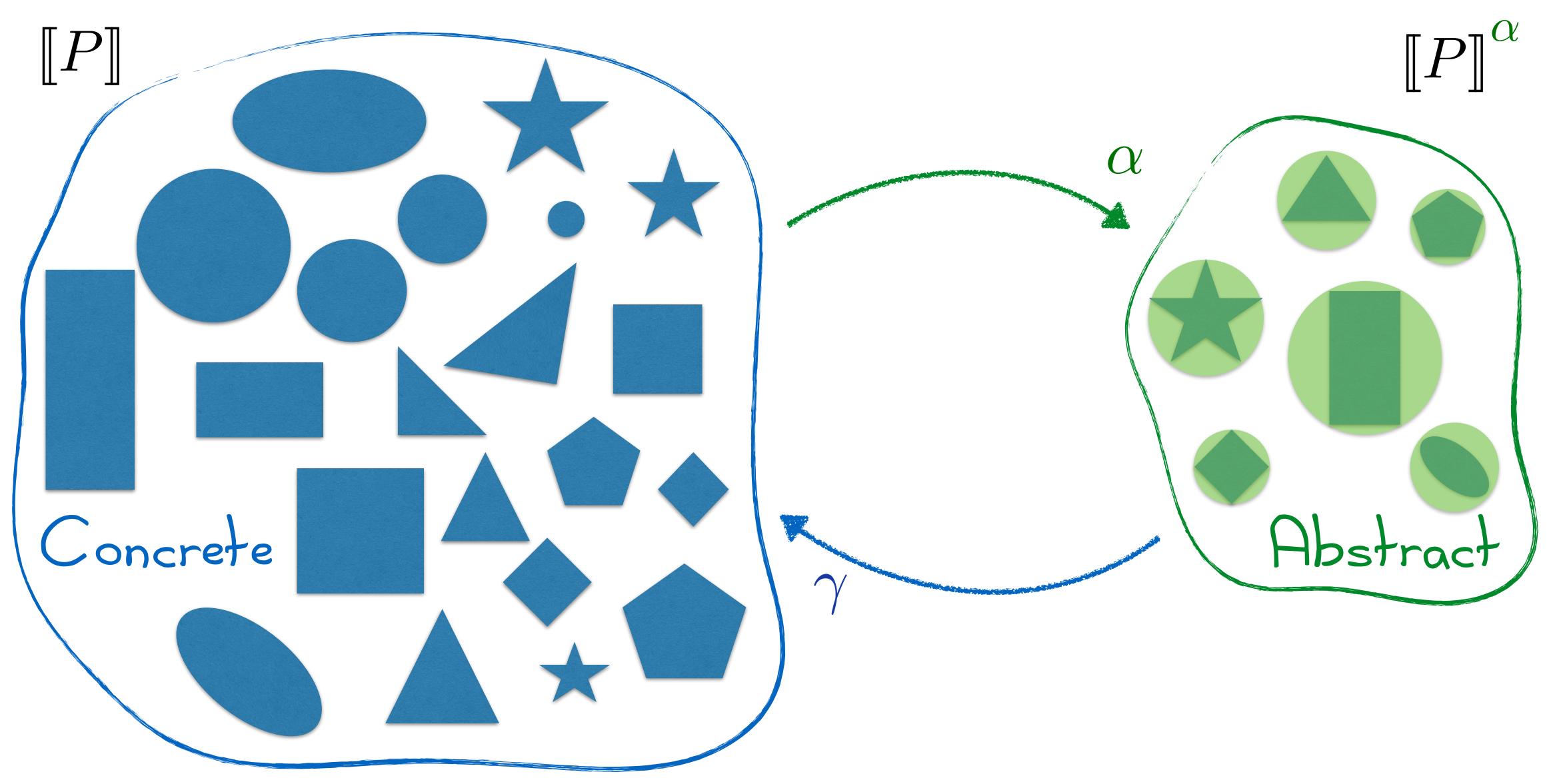
How much of the Standard Model holds in <u>Program Analysis</u>?

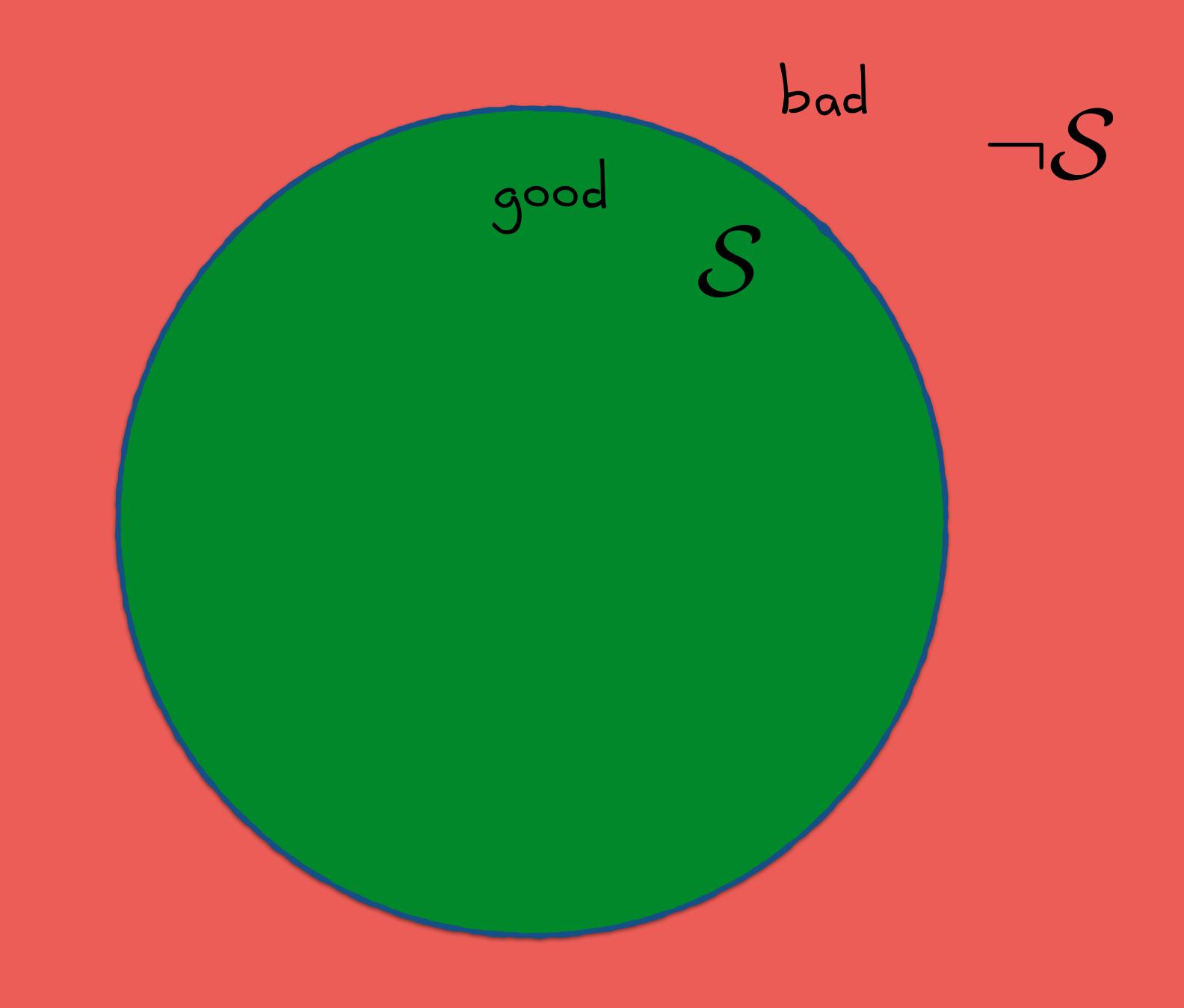
```
n := n0;
i := n;
while (i <> 0 ) do
      j := 0;
      while (j <> i) do
            j := j + 1
      od;
      i := i - 1
od
```

```
\{n0>=0\}
   n := n0;
{n0=n,n0>=0}
  i := n;
{n0=i,n0=n,n0>=0}
   while (i <> 0 ) do
      {n0=n, i>=1, n0>=i}
         j := 0;
      {n0=n, j=0, i>=1, n0>=i}
         while (j <> i) do
            {n0=n, j>=0, i>=j+1, n0>=i}
               j := j + 1
            {n0=n, j>=1, i>=j, n0>=i}
         od;
      {n0=n, i=j, i>=1, n0>=i}
         i := i - 1
      \{i+1=j,n0=n,i>=0,n0>=i+1\}
   od
{n0=n, i=0, n0>=0}
```

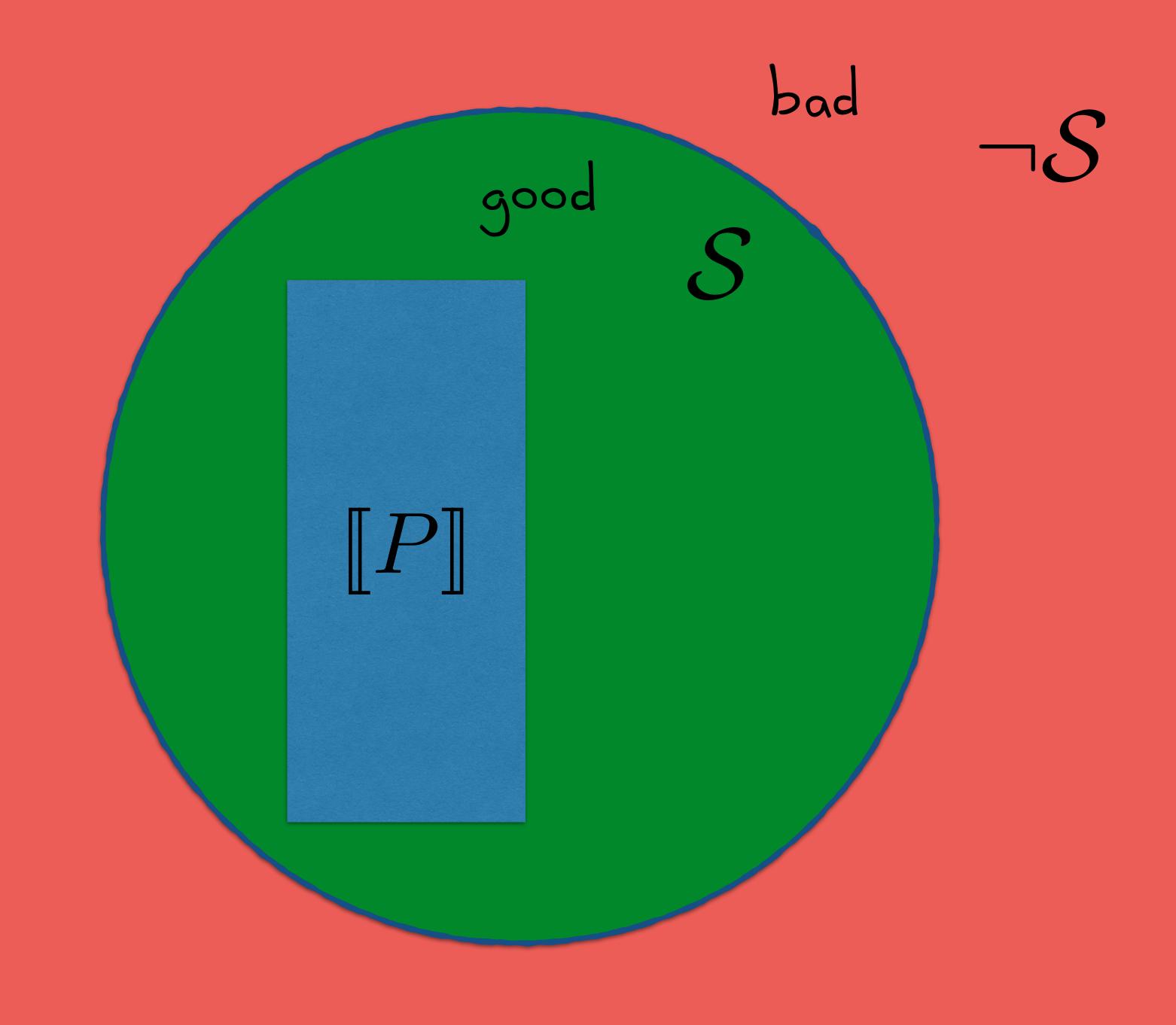




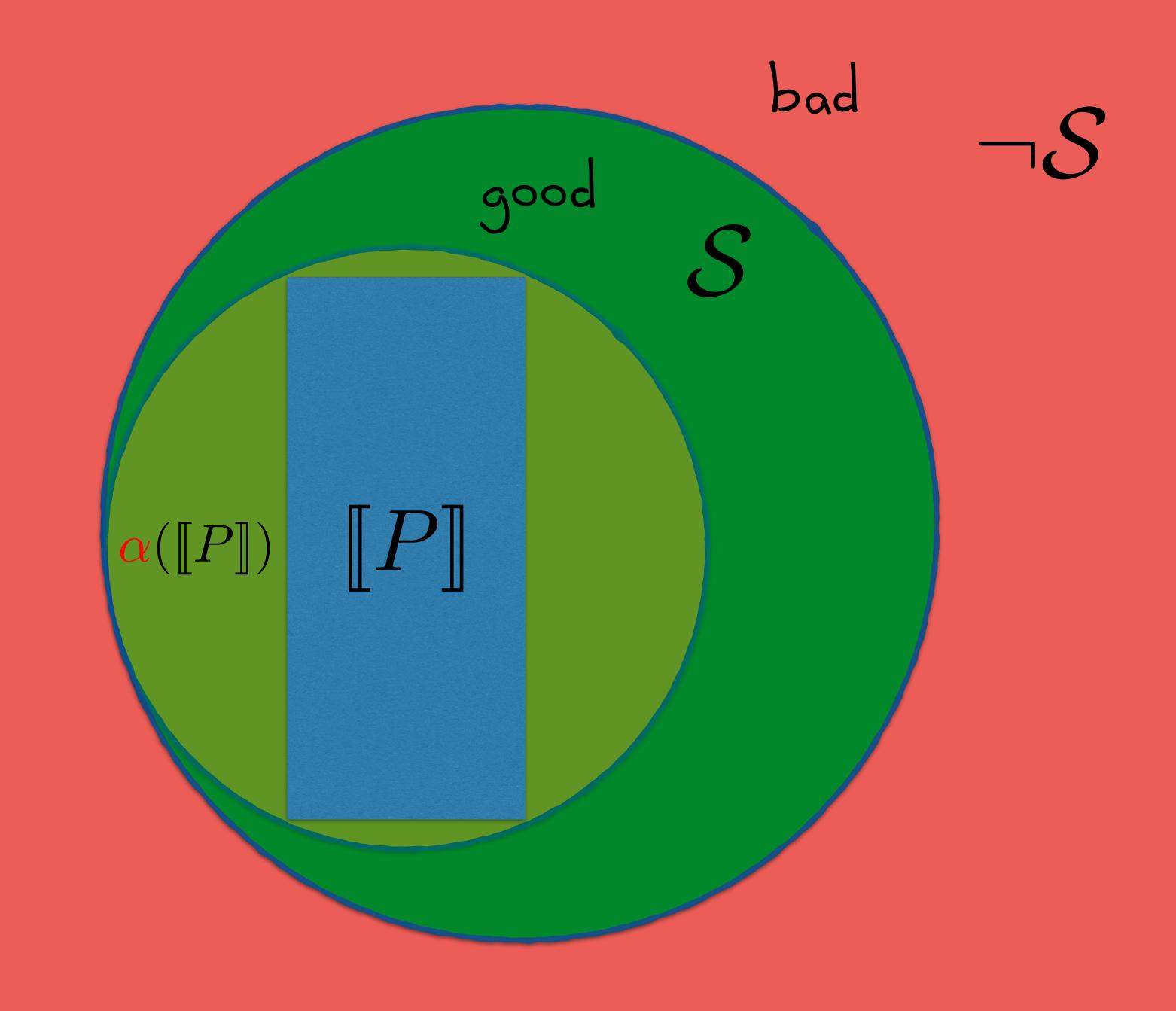




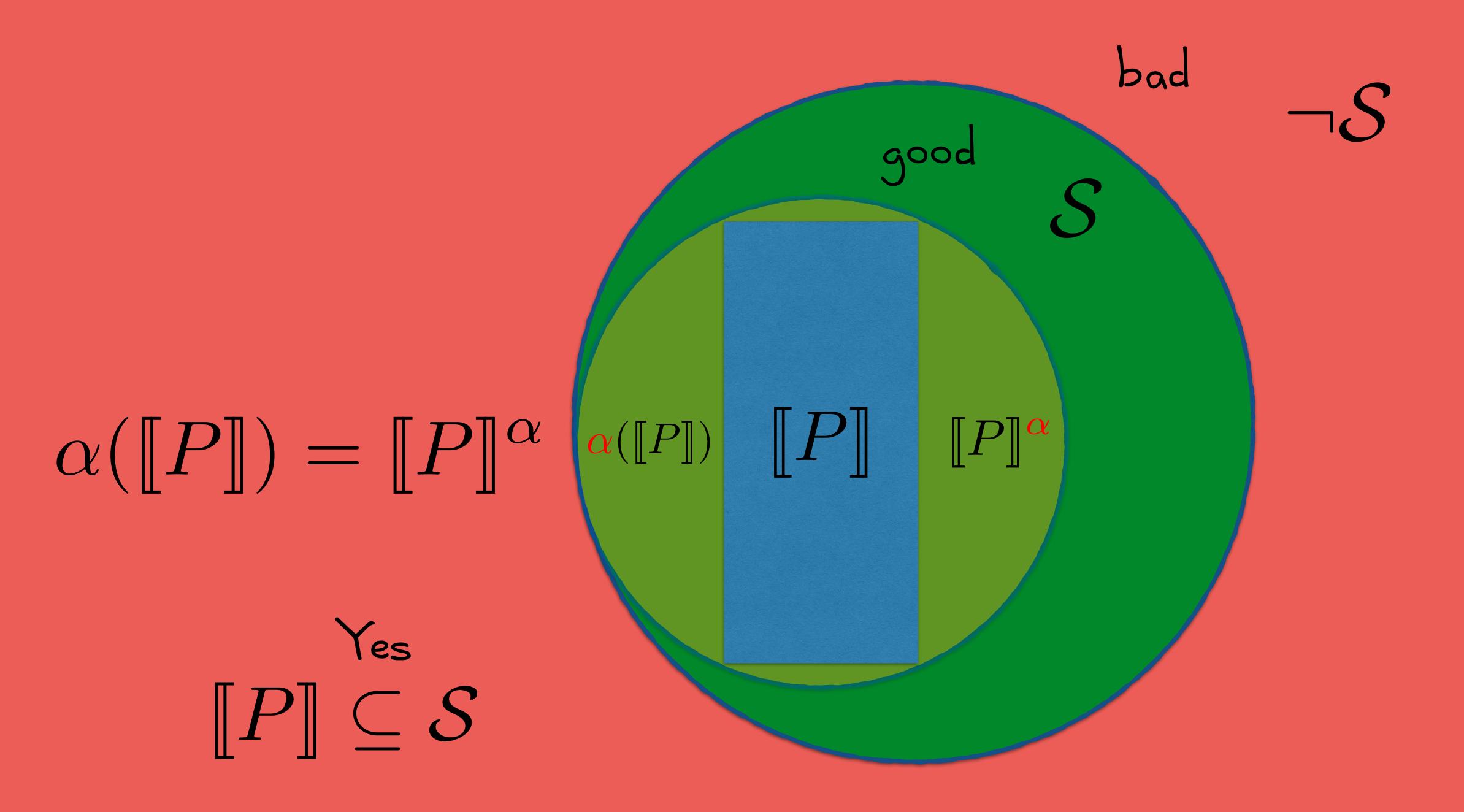
 $\llbracket P
rbracket \subseteq S$

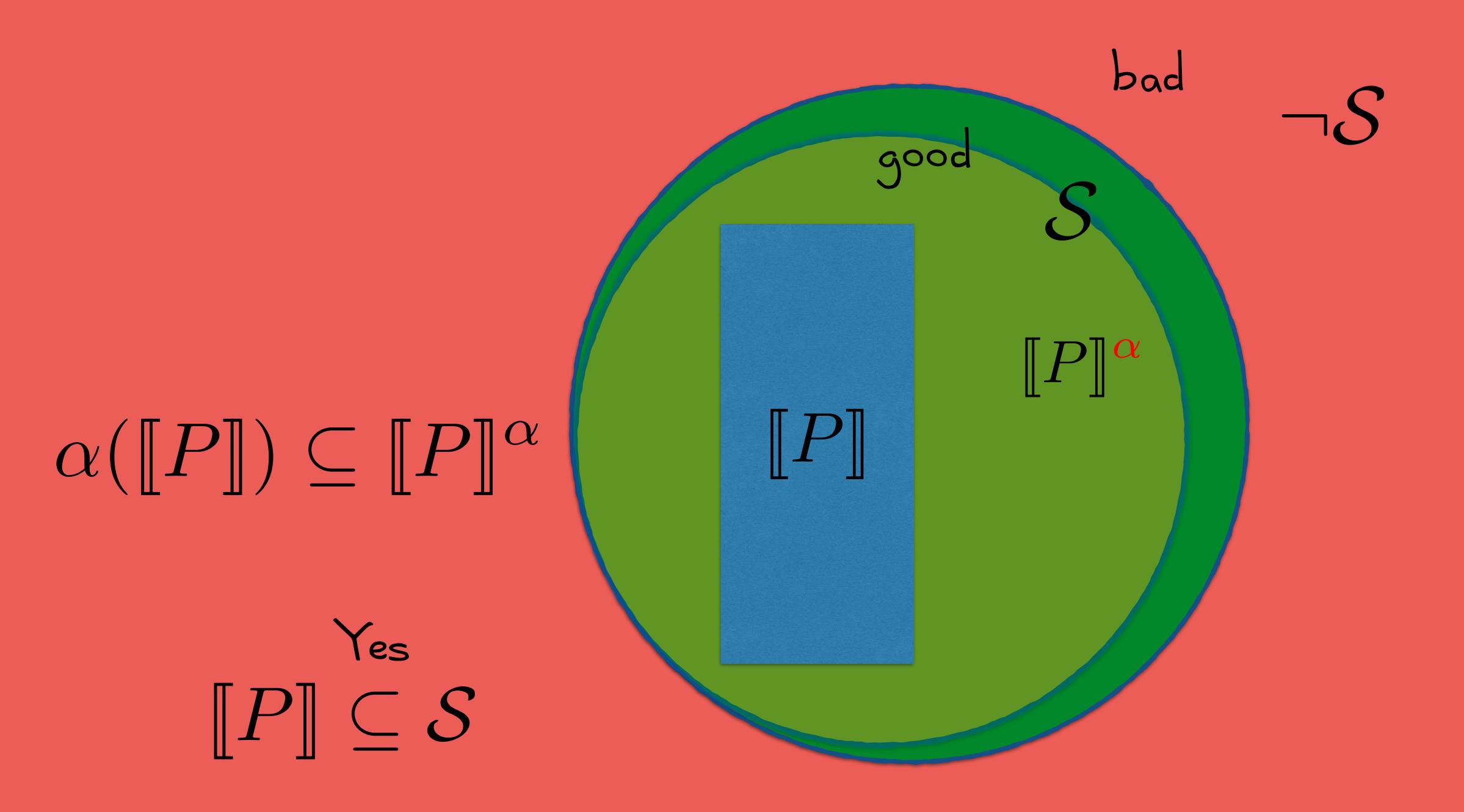


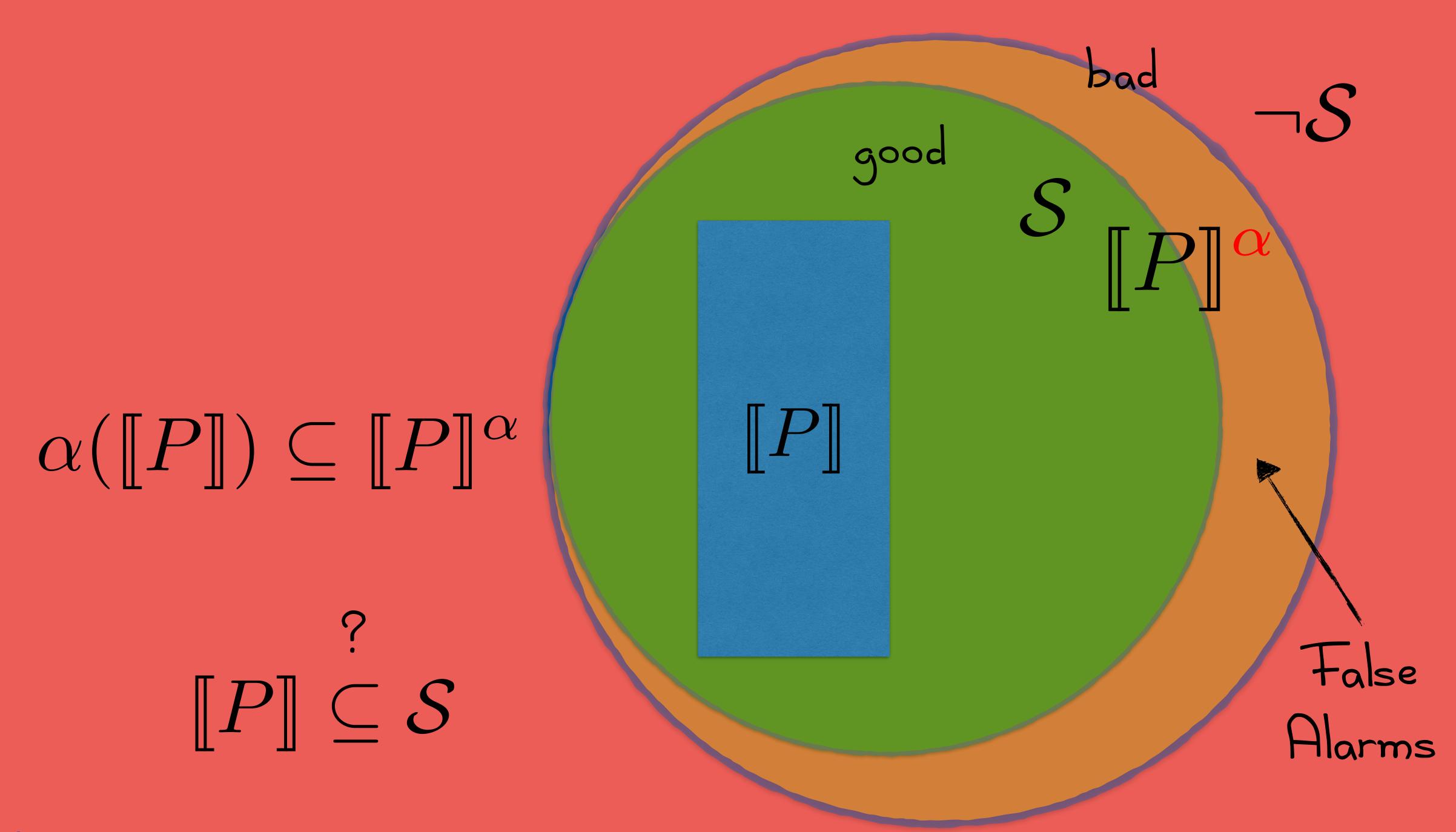
Yes P



Yes $[P] \subseteq S$







P ~ Q

Program equivalence

$$P \sim Q \iff \llbracket P \rrbracket = \llbracket Q \rrbracket$$

Program equivalence

$$P \stackrel{?}{\sim} Q \iff \llbracket P \rrbracket^{\alpha} = \llbracket Q \rrbracket^{\alpha}$$

Program equivalence by Abstract Interpreters?

```
{x int} x := 10;
       while
           (x>0)
             x := x-1
           \}; \{ x = 0 \}
{x int}x := 10;
       while
           (x>1)
             x := x-2
           }; { x = 0 }
```

```
{x int} x := 10;
       while [0,10]
           (x>0)
             x := x-1
           \}; \{ x = 0 \}
{x int} x := 10;
       while
                  [0,10]
           (x>1)
             x := x-2
           }; { x = 0 }
```

```
{x int} x := 10;
          while
                (x>0)
                                               \alpha(\llbracket P \rrbracket) = \llbracket P \rrbracket^{\alpha}
                   x := x-1
                \}; \{ x = 0 \}
                                        [0,10] \land (x \le 0) = \{x \in [0,0]\}
{x int} x := 10;
          while
                (x>1)
                                               \alpha(\|P\|) \subset \|P\|^{\alpha}
                   x := x-2
                                [0,10] \land (x \le 1) = \{x \in [0,1]\}
                \}; \{ x = 0 \}
```

```
{x int} x := 10;
           while
                  (x>0)
                                                   \alpha(\llbracket P \rrbracket) = \llbracket P \rrbracket^{\alpha}
                     x := x-1
                                           [0,10] \land (x \leq 0) = \{x \in [0,0]\}
                 \}; \{ x = 0 \}
{x int} x := 10;
           while
                  (x>1)
                                                   \alpha(\|P\|) \subset \|P\|^{\alpha}
                 x := x-2
}; \{x = 0\} [0,10] \land (x \le 1) \land (x \in [0,1]\}
```

```
{x int} x := -9;
       while
           (x<0)
             x := x+2
          \}; \{x=1\}
{x int} x := 10;
       while
           (x>1)
             x := x-2
          }; { x = 0 }
```

```
{x int} x := -9;
       while [-9,1]
           (x<0)
            x := x+2
          \}; \{x=1\}
{x int} x := 10;
       while
                 [0,10]
          (x>1)
            x := x-2
          }; { x = 0 }
```

```
{x int} x := -9;
          while
               (x<0)
                                            \alpha(\llbracket P \rrbracket) \subset \llbracket P \rrbracket^{\alpha}
                  x := x+2
               \}; \{x=1\}
                                      [-9,1] \land (x \ge 0) = \{x \in [0,1]\}
{x int} x := 10;
          while
               (x>1)
                                            \alpha(\llbracket P \rrbracket) \subset \llbracket P \rrbracket^{\alpha}
                  x := x-2
```

```
{x int} x := -9;
           while
                 (x<0)
                                                  \alpha(\llbracket P \rrbracket) \subset \llbracket P \rrbracket^{\alpha}
                    x := x+2
                                           [-9,1] \land (x \ge 0) \rightarrow (x \in [0,1])
                 \}; \{x=1\}
{x int} x := 10;
           while
                 (x>1)
                x := x-2
}; \{x = 0\} [0,10] \land \{x = 1,000\} \{x \in [0,1]\}
```

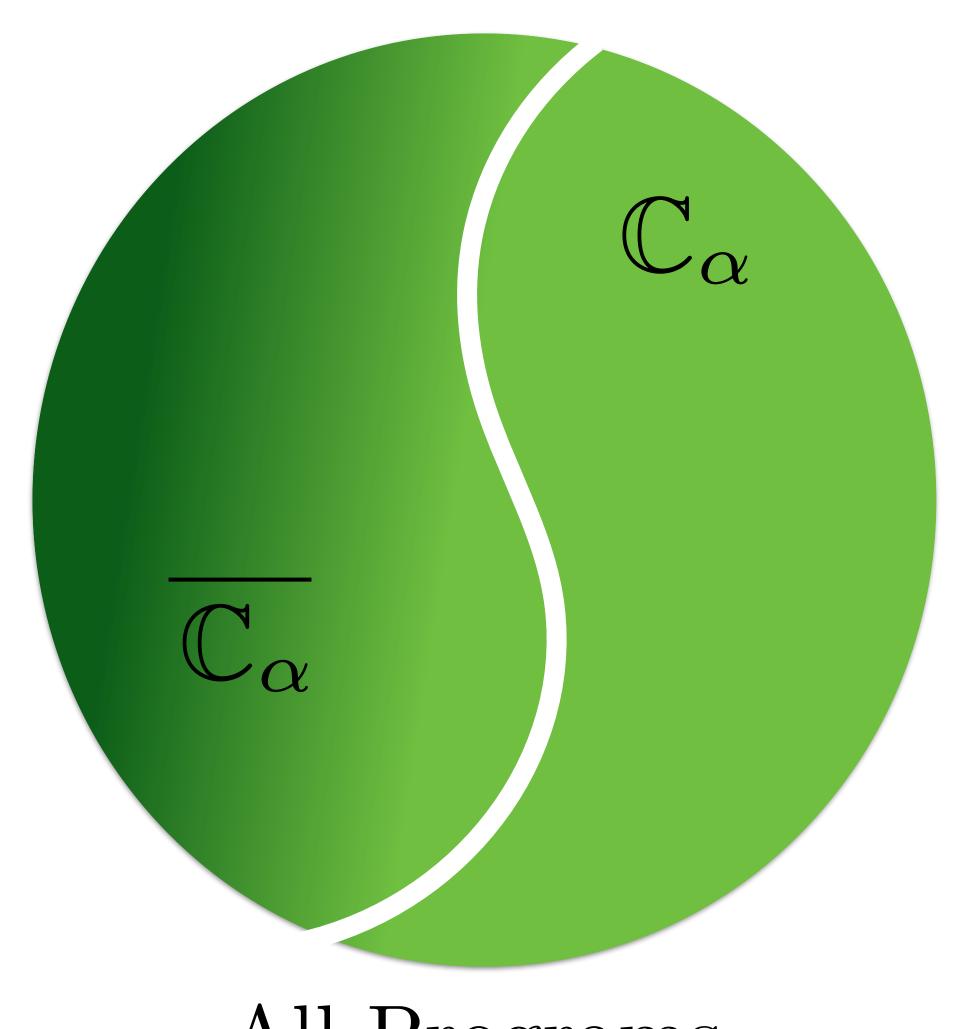
POPL2015

$$\mathbb{C}_{\alpha} = \{ P \in \text{Programs} \mid \alpha(\llbracket P \rrbracket) = \llbracket P \rrbracket^{\alpha} \}$$

Incomplete $\overline{\mathbb{C}_{\alpha}}$ \mathbb{C}_{α} Complete

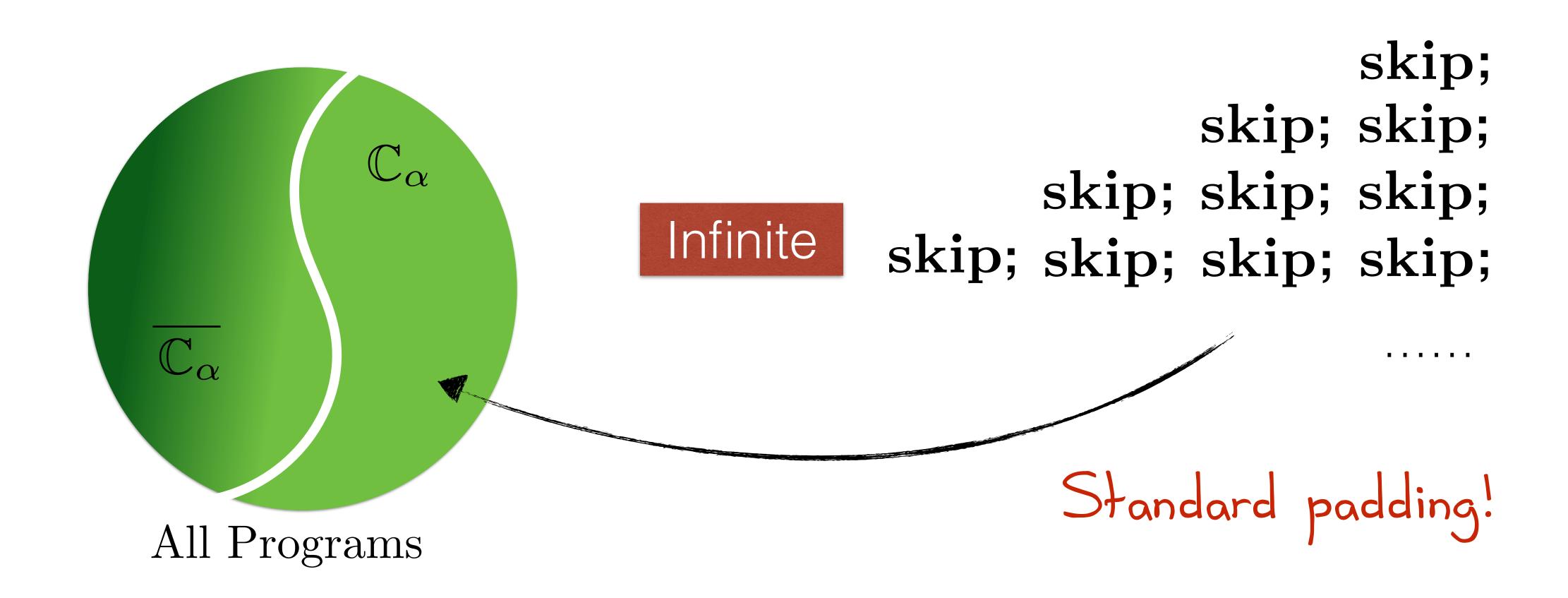
$$\overline{\mathbb{C}_{\alpha}} = \{ P \in \text{Programs} \mid \alpha(\llbracket P \rrbracket) \neq \llbracket P \rrbracket^{\alpha} \}$$

POPL2015

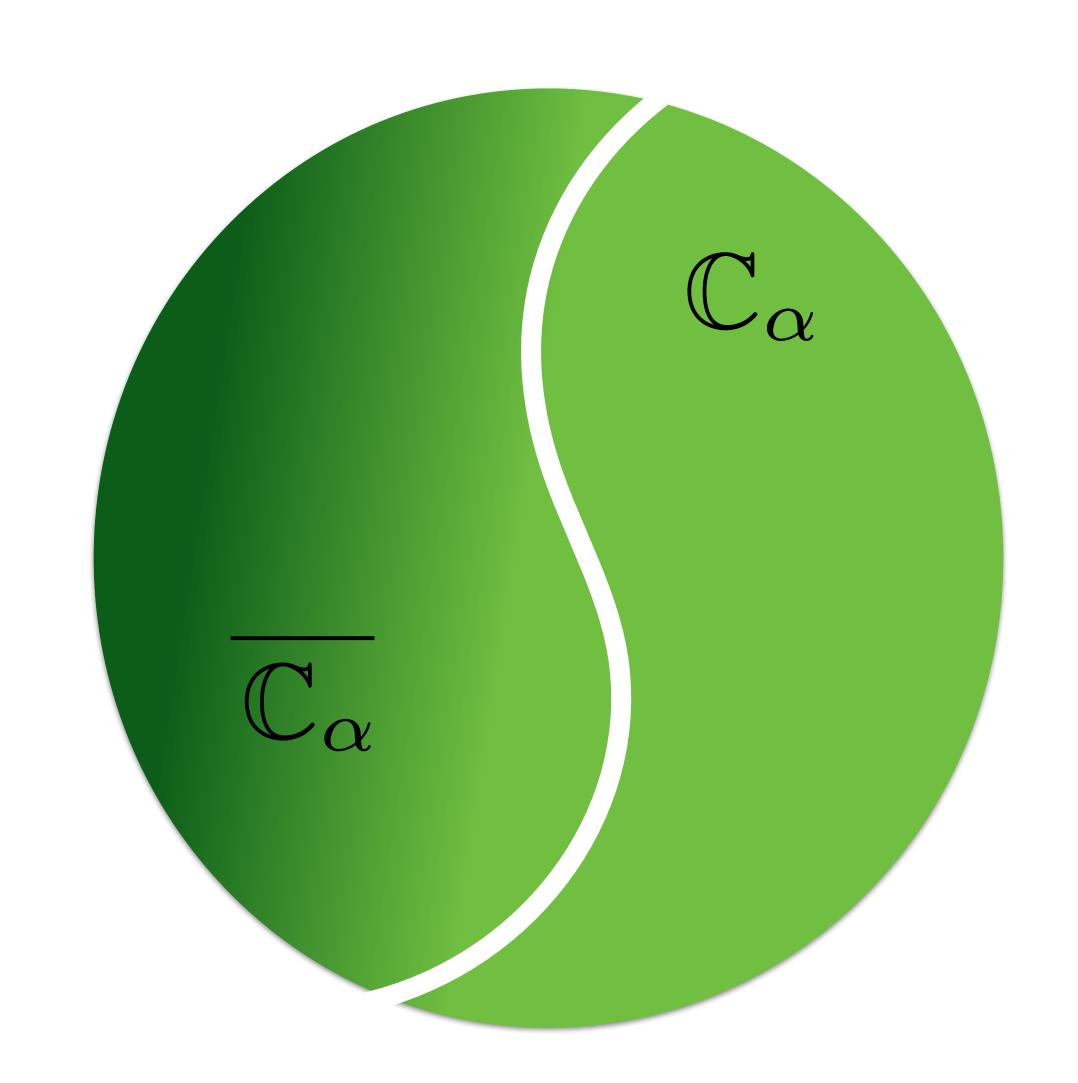


All Programs

POPL2015



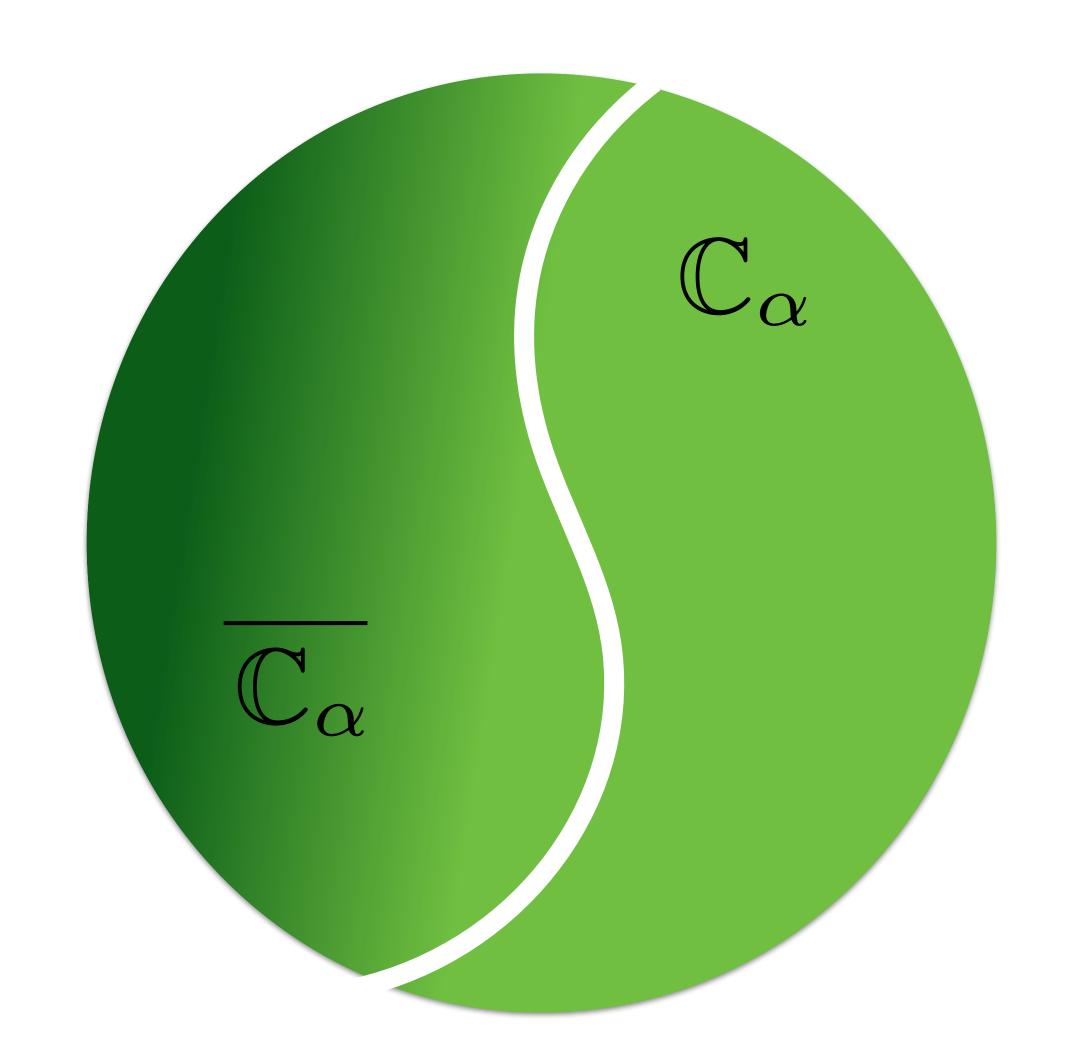
POPL2015



On Completeness Classes

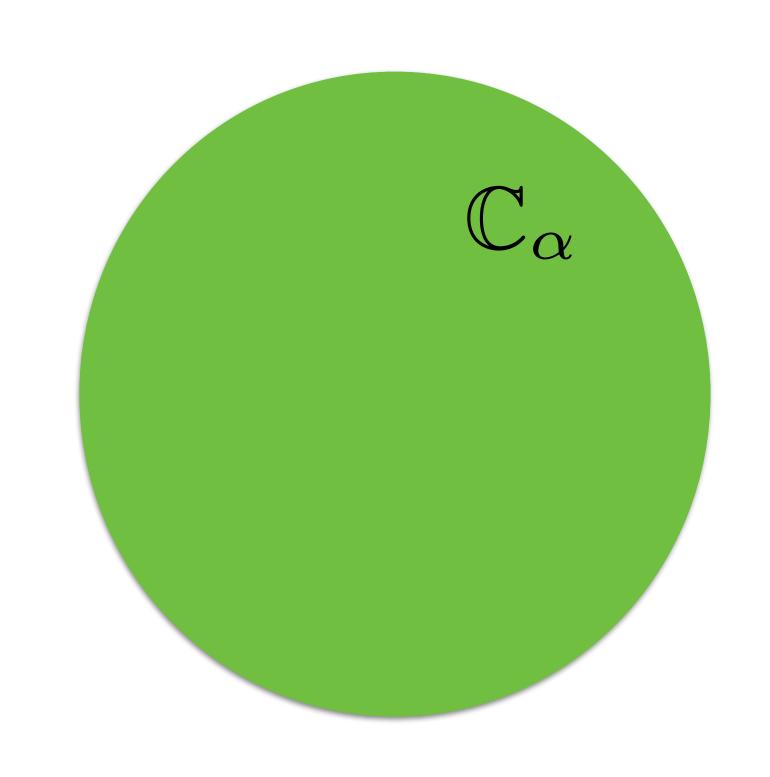
```
{x int} x := 10;
POPL2015
                                           while
                                              (x>0)
                                                x := x-1
                                              Non
                                                x \in [0,0]
                        Extensional
                                    {x int}_x := 10;
                                           while
                                              (x>1)
                                                x := x-2
                                              x \in [0,1]
```

On Completeness Classes



On Completeness Classes

POPL2015



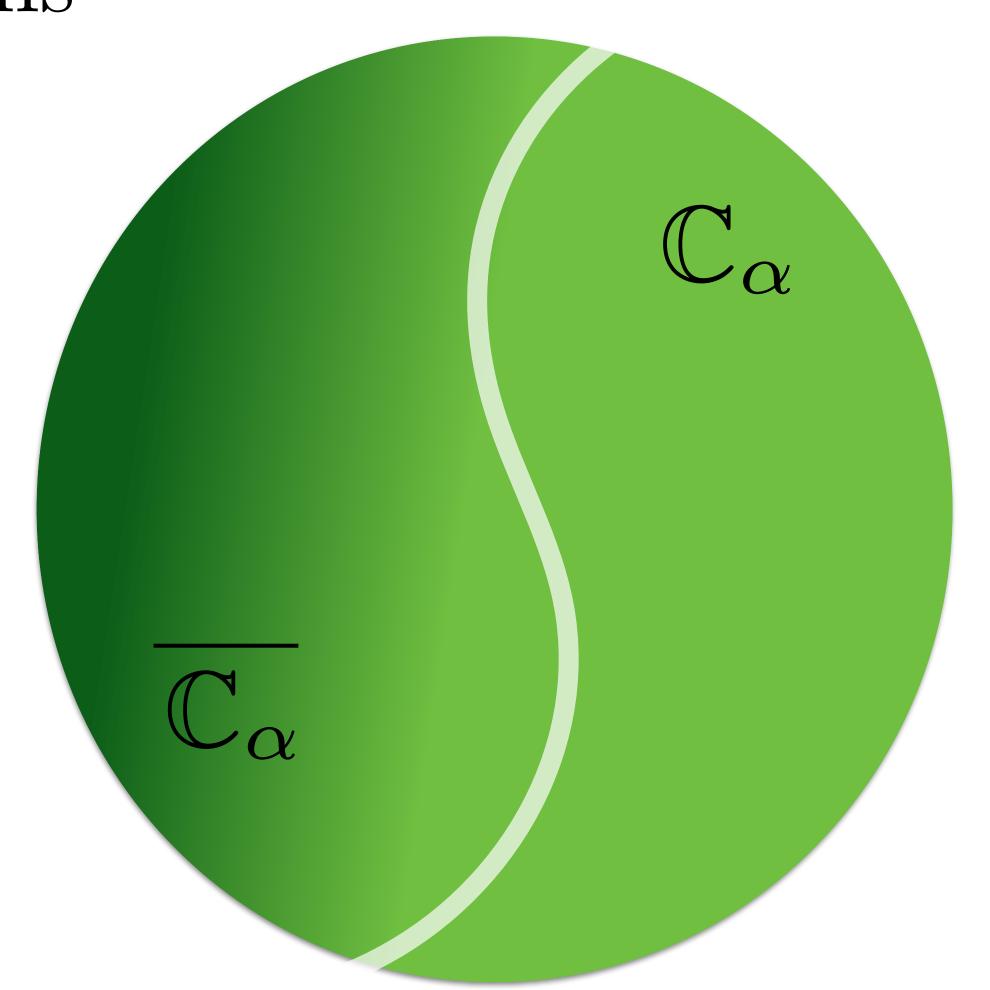
$$\mathbb{C}_{\alpha}=\mathrm{All}\;\mathrm{Programs}$$

$$\Leftrightarrow \alpha \in \{\lambda x.x, \lambda x.\top\}$$

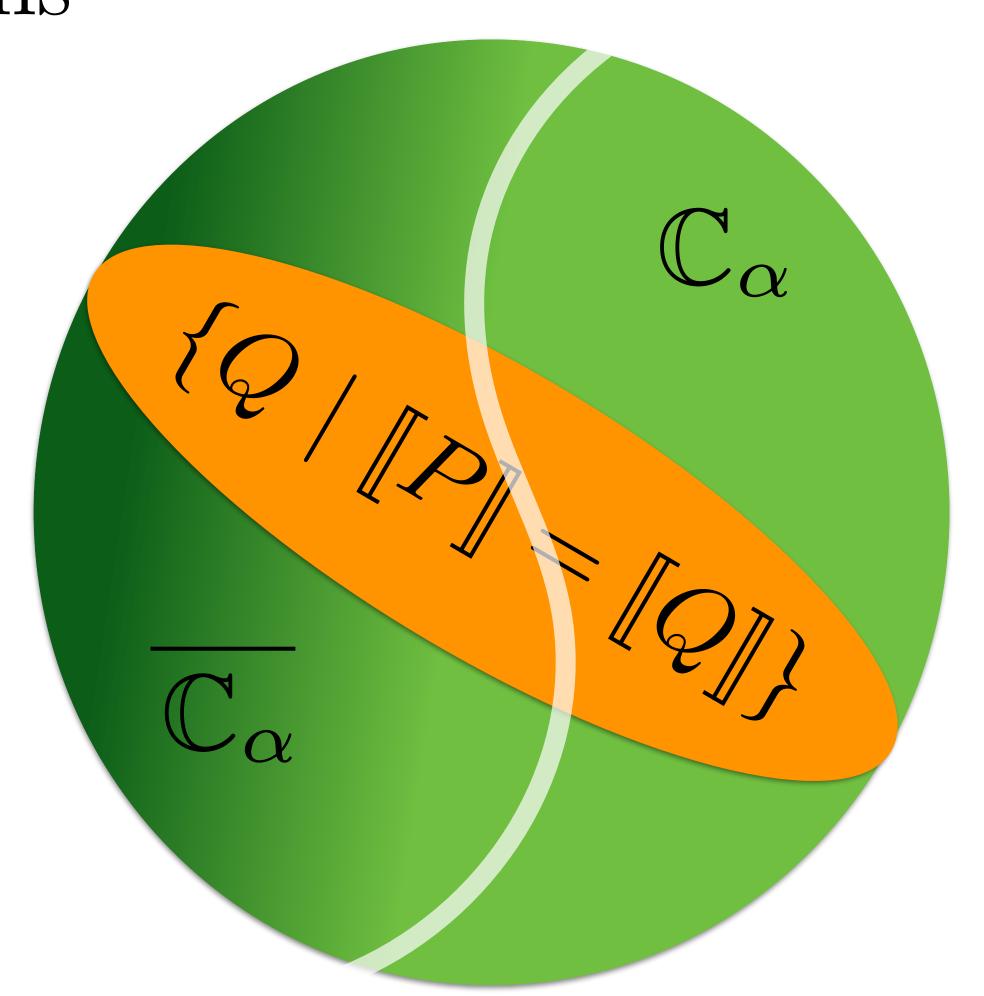
Similar to Rice Theorem!

Whenever we can see something but not all there exists a program for which you cannot be precise!

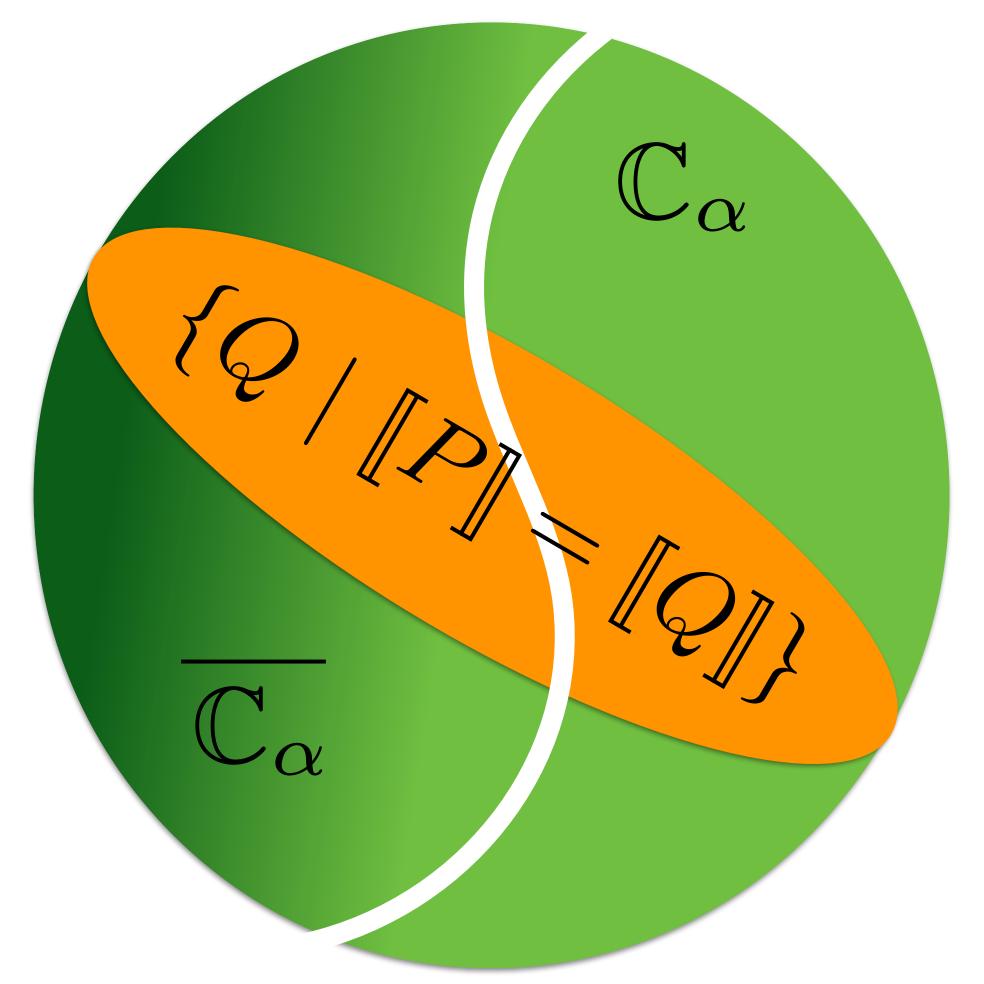
Given $P \in \operatorname{Programs}$



Given $P \in \operatorname{Programs}$

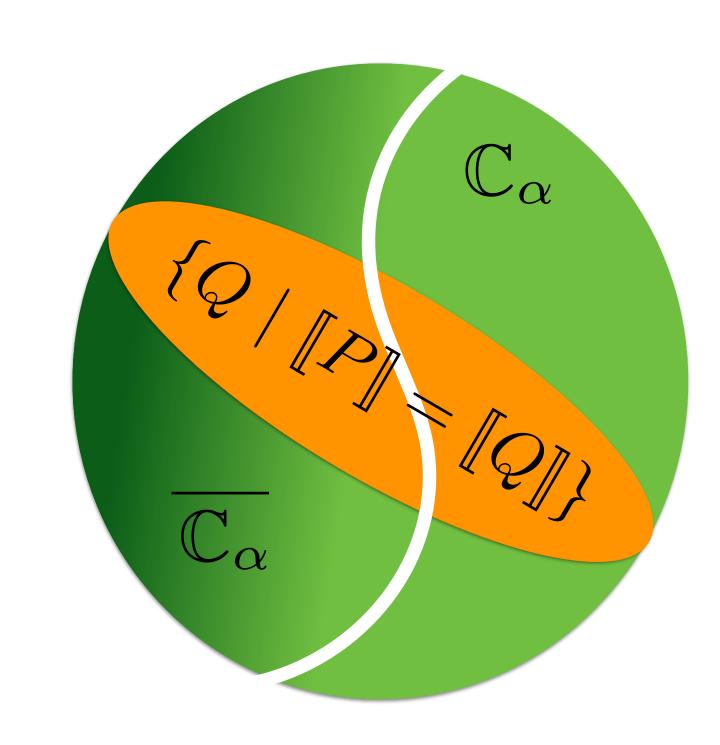


Given $P \in \operatorname{Programs}$



$$Q \in \overline{\mathbb{C}_{\alpha}(P)} \stackrel{?}{\Rightarrow} f(Q) \in \mathbb{C}_{\alpha}(P)$$

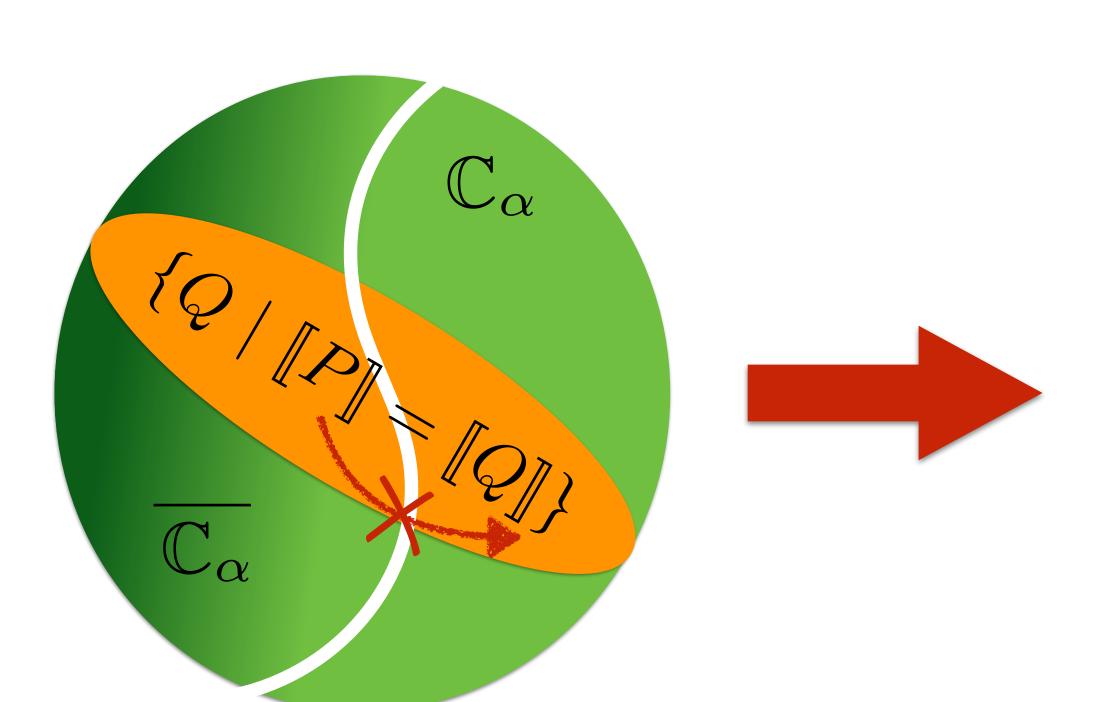
Given $P \in \operatorname{Programs}$



$$Q \in \overline{\mathbb{C}_{\alpha}(P)} \stackrel{?}{\Rightarrow} f(Q) \in \mathbb{C}_{\alpha}(P)$$

Given $P \in \operatorname{Programs}$

POPL2020

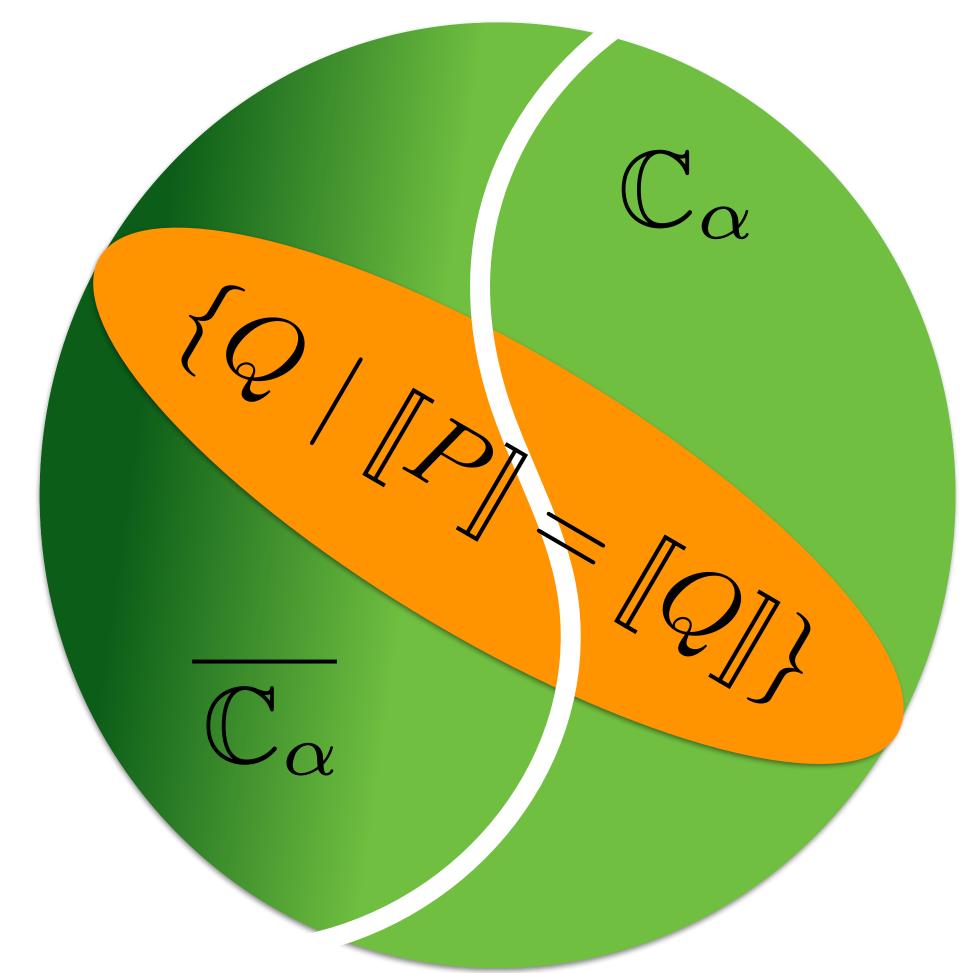


non-termination
$$\alpha = \{\top, \bot\}$$

Would decide termination!

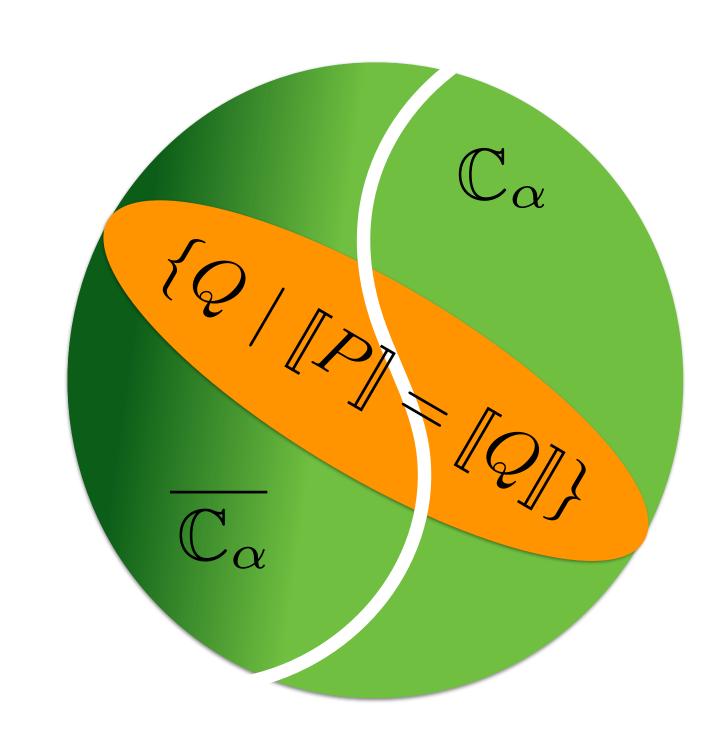
$$Q \in \overline{\mathbb{C}_{\alpha}(P)} \stackrel{?}{\Rightarrow} f(Q) \in \mathbb{C}_{\alpha}(P)$$

Given $P \in \operatorname{Programs}$



$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

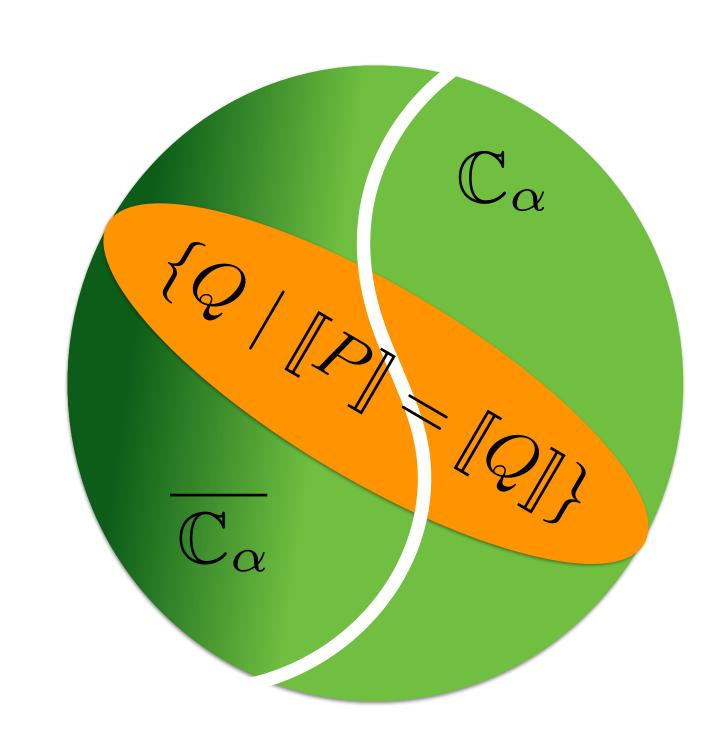
Given $P \in \operatorname{Programs}$



$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

Given $P \in \operatorname{Programs}$

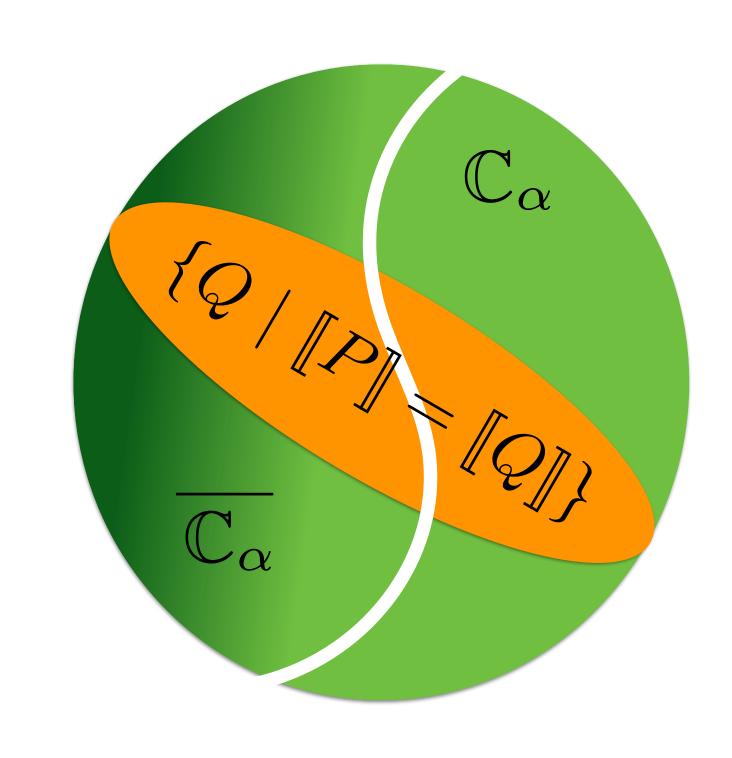
POPL2020

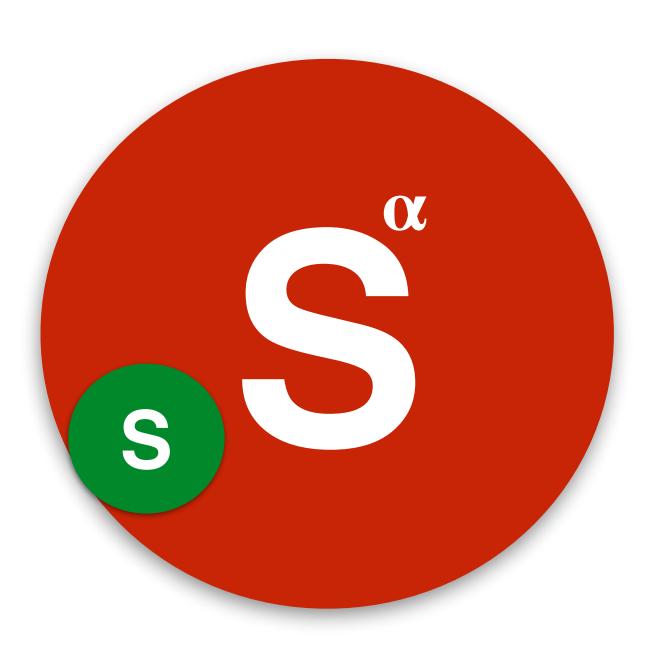


S

$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

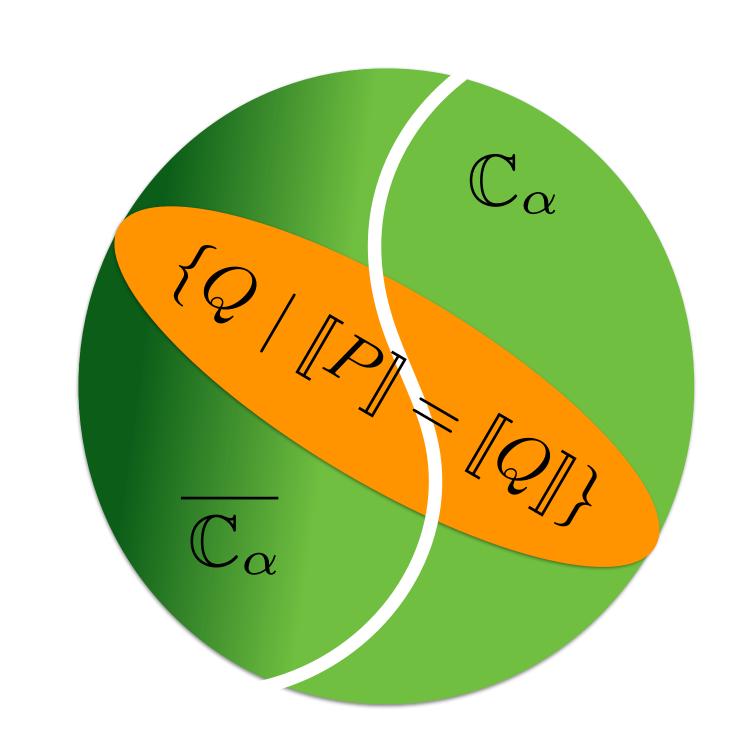
Given $P \in \operatorname{Programs}$

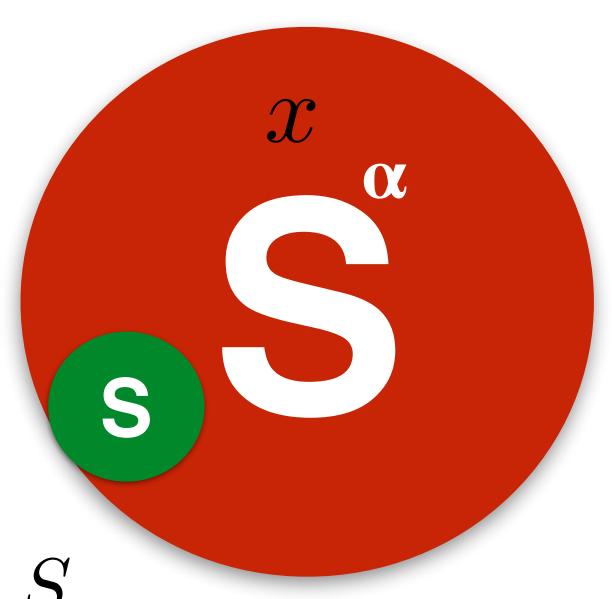




$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

Given $P \in \operatorname{Programs}$



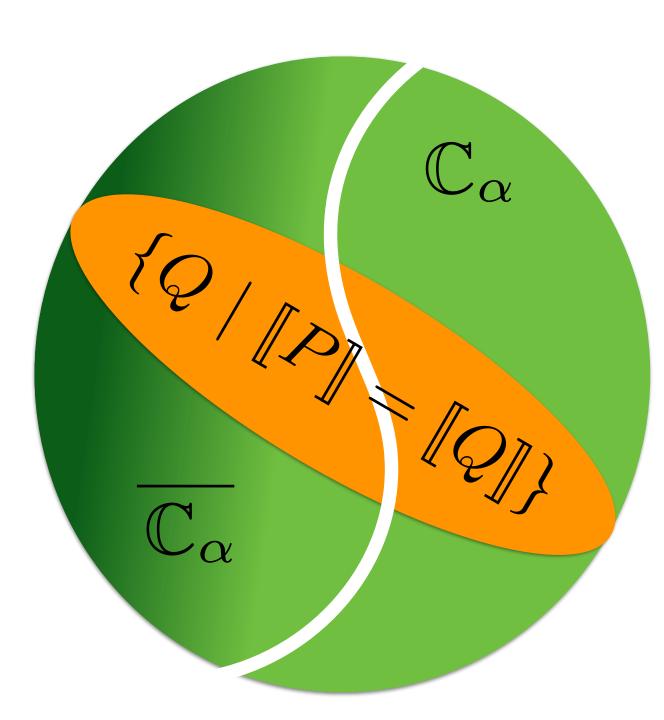


$$In(S) \equiv x \in ?S$$

$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

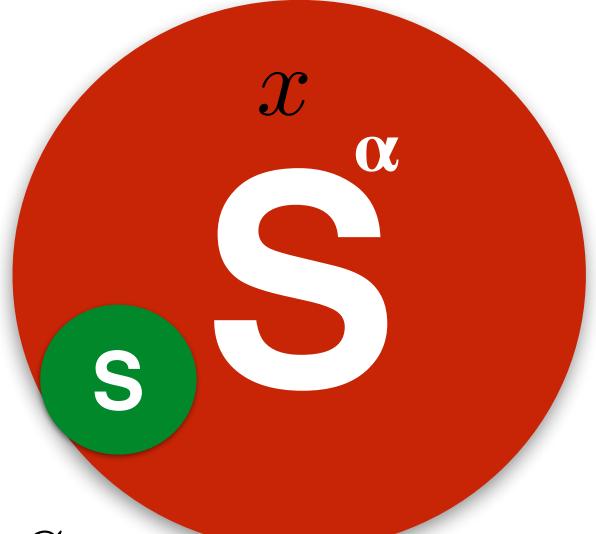
Given $P \in \operatorname{Programs}$

POPL2020



if In(S) then
if $\neg In(S)$ then $Set(n^{\circ}, S) \approx P$;
else P

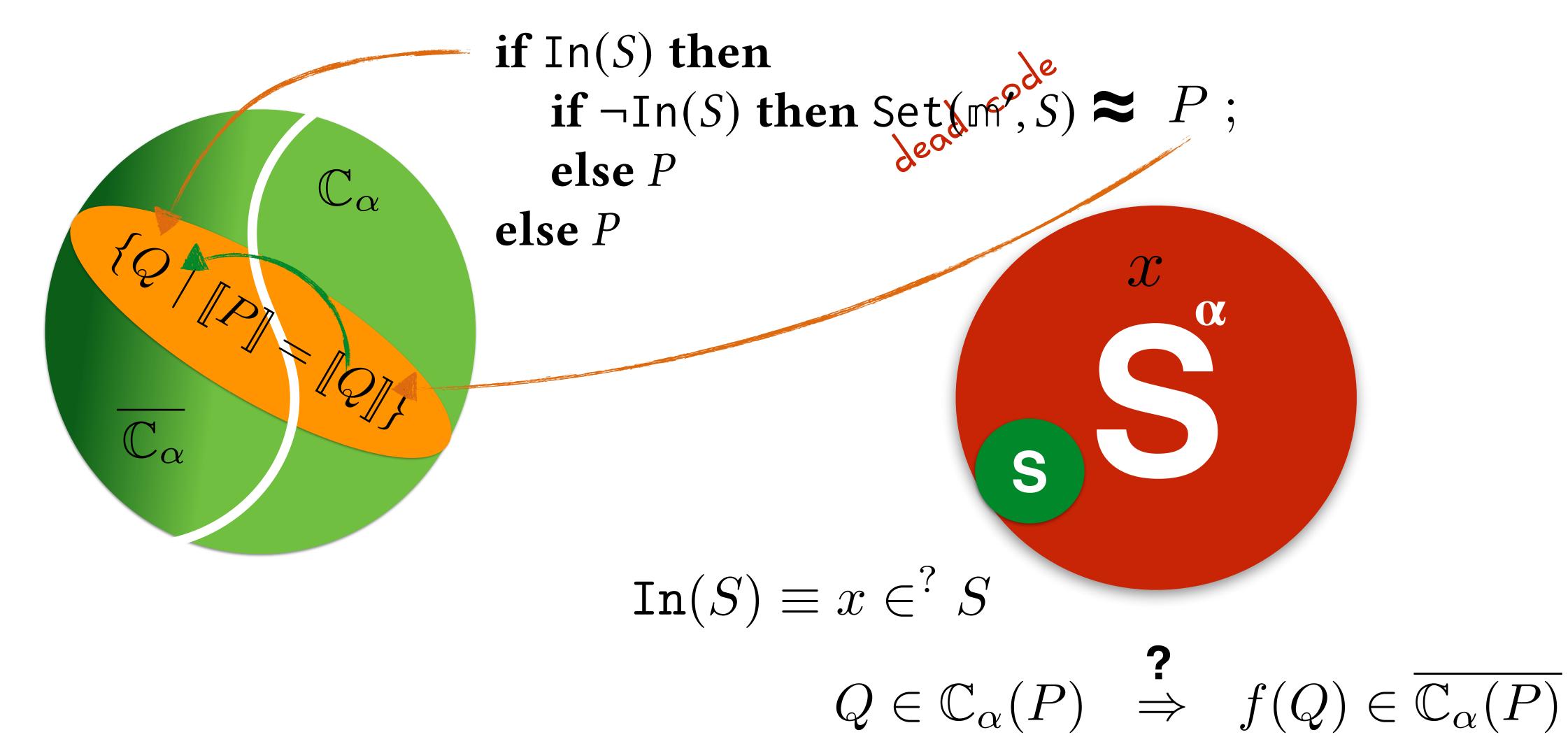
else P



$$In(S) \equiv x \in ?S$$

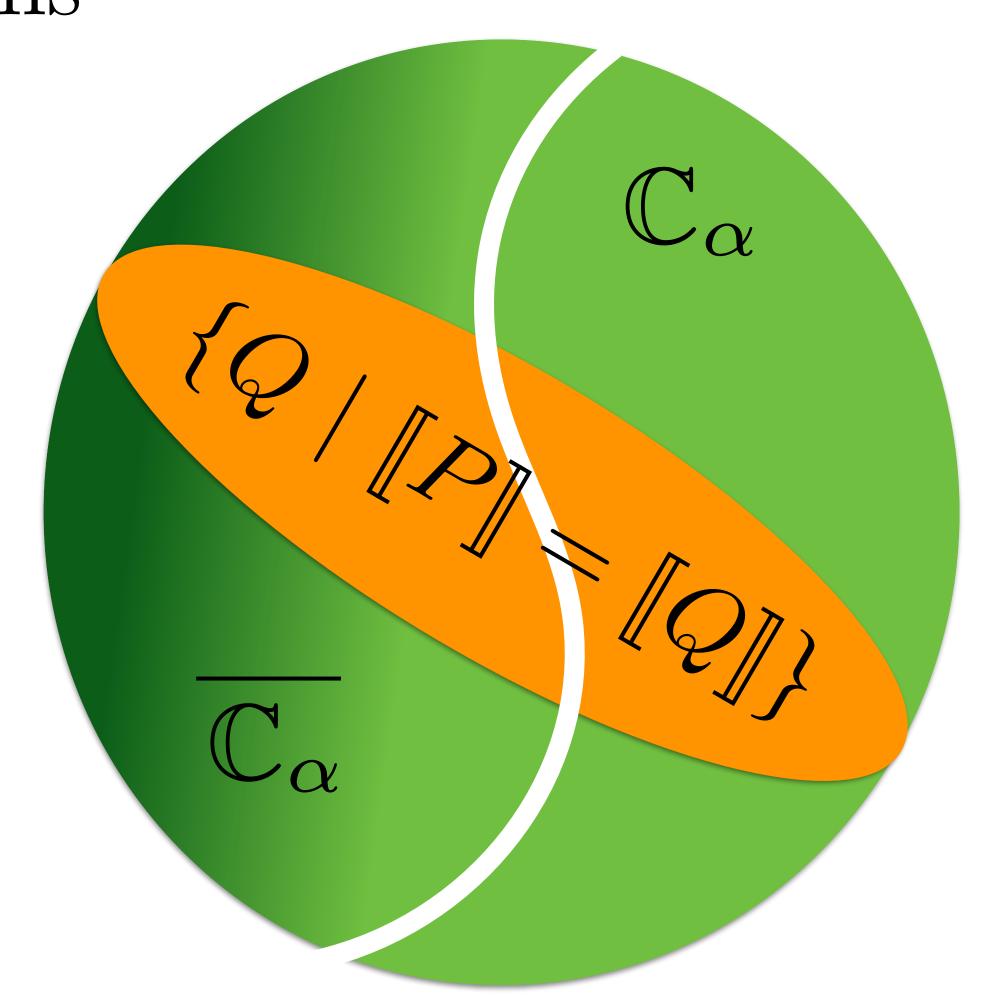
$$Q \in \mathbb{C}_{\alpha}(P) \stackrel{?}{\Rightarrow} f(Q) \in \overline{\mathbb{C}_{\alpha}(P)}$$

Given $P \in \operatorname{Programs}$

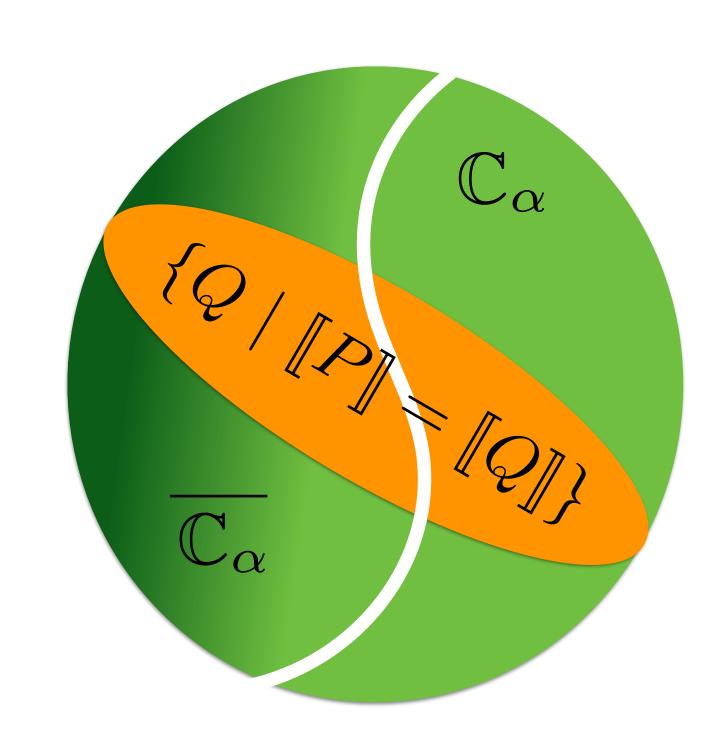


```
An Abstract property of programs is (Rice)-extensional iff \alpha is trivial
```

Given $P \in \operatorname{Programs}$

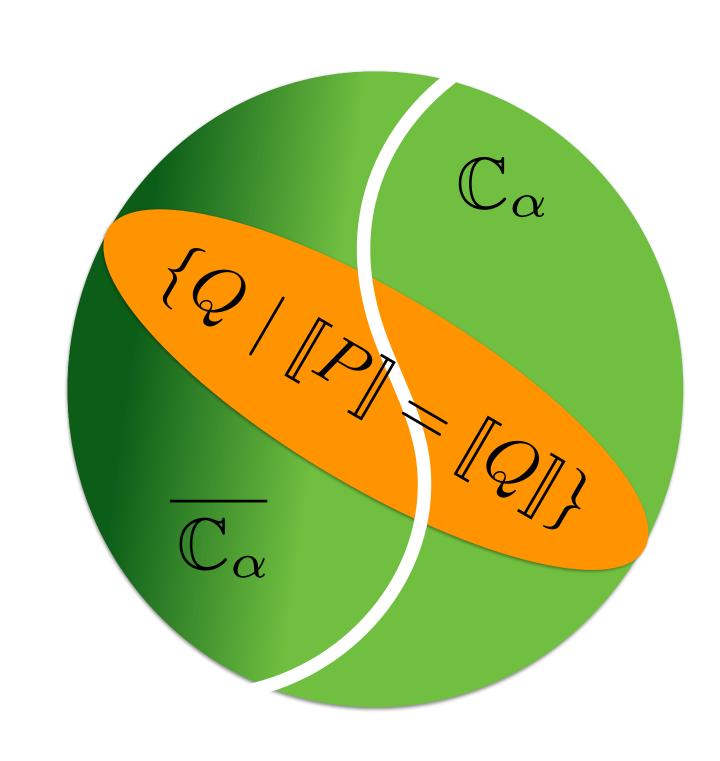


Given $P \in \operatorname{Programs}$



Given $P \in \operatorname{Programs}$

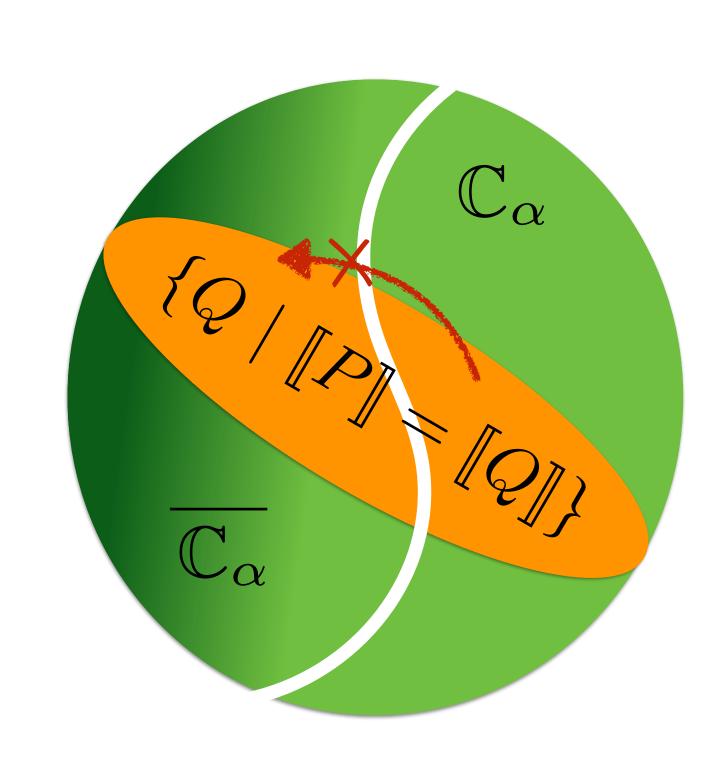
POPL2020



Can \mathbb{C}_{α} be Turing complete?

Given $P \in \operatorname{Programs}$

POPL2020



Can \mathbb{C}_{α} be Turing complete?

NO

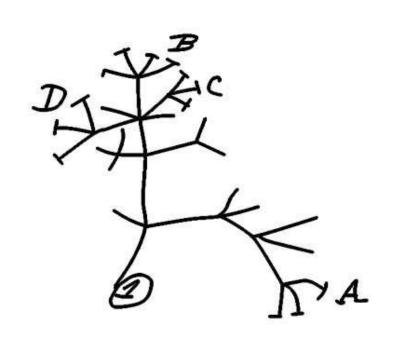
 $\mathtt{spec},\mathtt{int}\in\mathbb{C}_{lpha}$

 $orall P: \llbracket \mathtt{spec} \rrbracket (\mathtt{int}, P) \in \mathbb{C}_{lpha}$

POPL2020

Any non-trivial abstract property of programs is intensional!

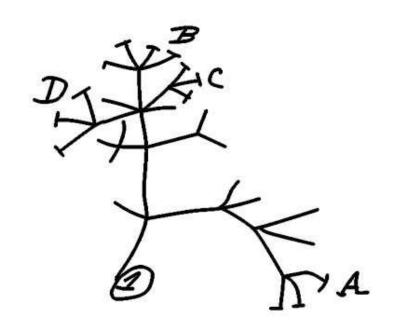
Non-trivial abstract interpretations always reveal properties about the way the code is written!



POPL2020

Program Analysis is like Computational Complexity

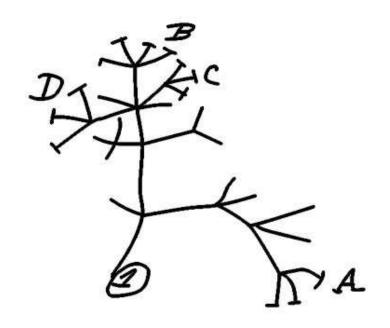
Can we build an implicit program analysis theory?



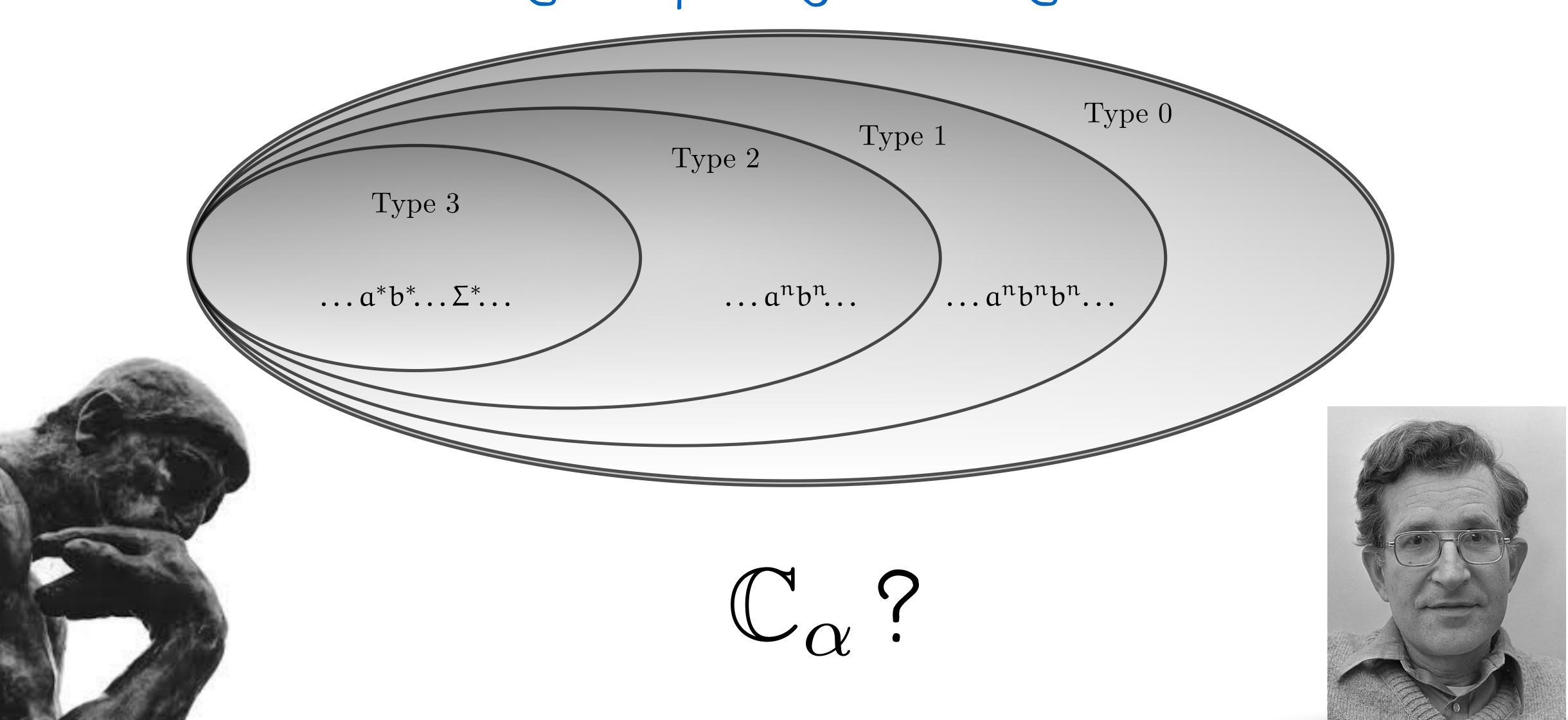
In the Future? PRIN - Analysis of Program Analyses (ASPRA)

If α is non-trivial which programs can I build in \mathbb{C}_{α} ?

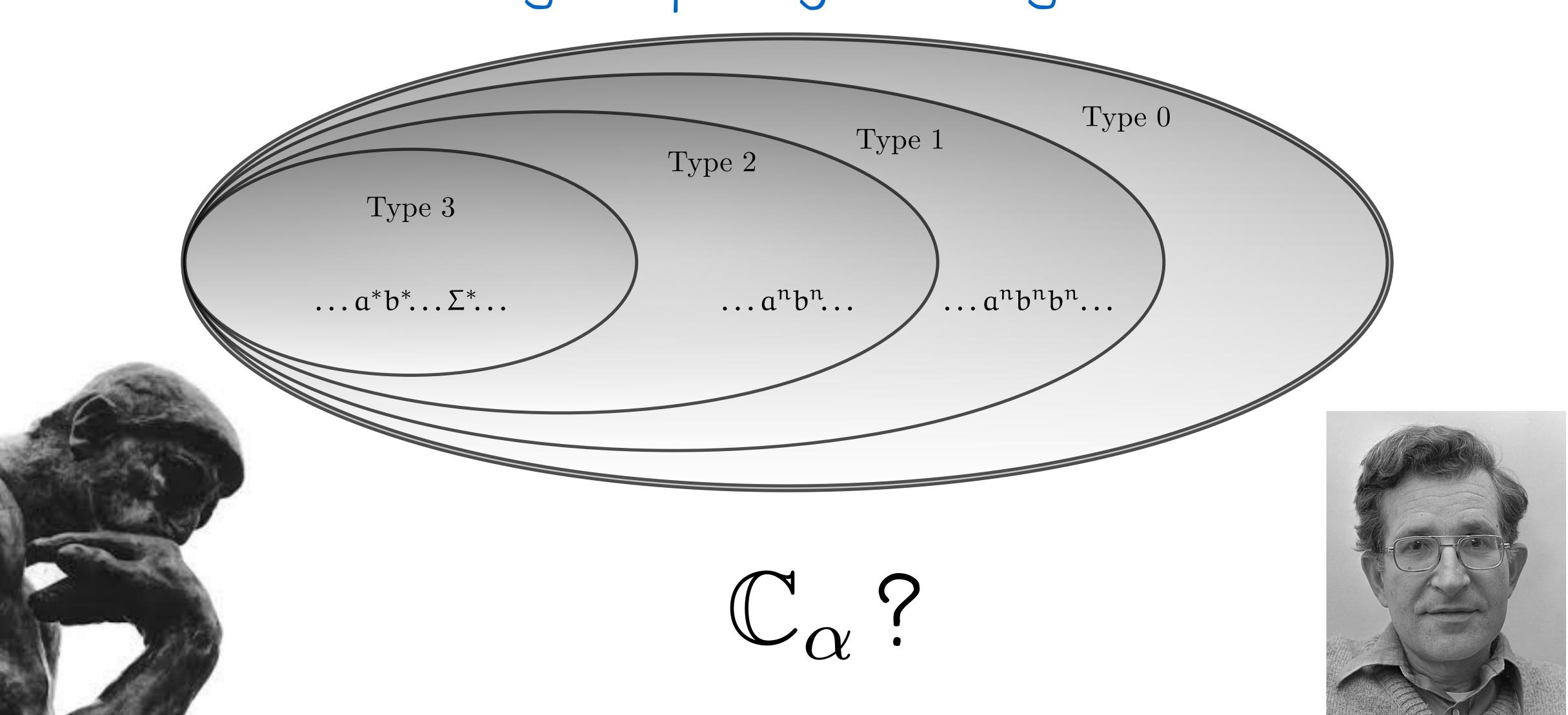
Hack the code to increase precision!



In the Future? PRIN - Analysis of Program Analyses (ASPRA)



In the Future? PRIN - Analysis of Program Analyses (ASPRA)



Thanks Simone

